岩性油气藏 ›› 2020, Vol. 32 ›› Issue (1): 86–93.doi: 10.12108/yxyqc.20200109

• 勘探技术 • 上一篇    下一篇

基于最优化估算和贝叶斯统计的TOC预测技术

赵万金1, 高海燕2, 闫国亮1, 郭同翠3   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 兰州财经大学 统计学院, 兰州 730020;
    3. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2019-05-08 修回日期:2019-08-03 出版日期:2020-01-21 发布日期:2019-11-22
  • 第一作者:赵万金(1980-),男,硕士,高级工程师,主要从事地震储层预测技术与应用方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:zhao_wj@petrochina.com.cn
  • 通信作者: 高海燕(1980-),女,博士,副教授,主要从事大数据统计及最优化理论方法方面的研究。Email:gaohy_54@sina.com。
  • 基金资助:
    中国石油天然气集团有限公司科学研究与技术开发项目“海外重点战略大区勘探技术研究与应用”(编号:2018A-4305)、“非均质储层流体因子构建新方法研究”(编号:2019A-3310)联合资助

TOC prediction technology based on optimal estimation and Bayesian statistics

ZHAO Wanjin1, GAO Haiyan2, YAN Guoliang1, GUO Tongcui3   

  1. 1. PetroChina Research Institute of Petroleum Exploration&Development-Northwest, Lanzhou 730020, China;
    2. Lanzhou University of Finance and Economics, Lanzhou 730020, China;
    3. PetroChina Research Institute of Petroleum Exploration&Development, Beijing 100083, China
  • Received:2019-05-08 Revised:2019-08-03 Online:2020-01-21 Published:2019-11-22

摘要: 致密岩层中总有机碳(TOC)含量往往直接指示了油气藏的所在,但致密岩层往往岩性配置复杂,利用常规地球物理技术难以识别有效烃源岩。研究提出一种基于最优化估算和贝叶斯统计分类的TOC井-震联合预测技术,即将常规方法估算的TOC作为初始值,利用构建的岩石密度计算模型和最优化理论对TOC初始值进行校正,得到与实验室样点最佳匹配的TOC测井曲线;在TOC敏感参数分析的基础上,采用贝叶斯统计分类方法将反演的TOC敏感参数转换为TOC概率体空间分布。实际应用于湖相致密泥灰岩预测,为高产油井ST3井的部署提供了可靠依据,并验证了该技术的有效性。该项技术可推广应用于具有类似地质背景的有效烃源岩预测。

关键词: 致密岩性, 总有机碳, 岩石物理模型, 最优化, 贝叶斯, 井-震联合

Abstract: The total organic carbon(TOC)content in tight rock formations often directly indicates the location of oil and gas reservoirs,but dense rock formations often have complex lithology configurations,so it is difficult to identify effective source rocks by using conventional geophysical techniques. This paper proposed a TOC wellseismic joint prediction technology based on optimal estimation and Bayesian statistical classification. The TOC estimated by the conventional method was taken as the initial value,and the initial value of TOC was corrected by using the constructed rock density calculation model and optimization theory. The TOC log curve with the best matching with the laboratory sample was obtained. Based on the analysis of TOC sensitive parameters,the inversion TOC sensitive parameters were converted into TOC probability volume spatial distribution by Bayesian statistical classification method. This technology was applied to the prediction of lacustrine dense marl reservoirs,providing a reliable basis for the deployment of high-yield oil wells ST3. The practical application results verified the effectiveness of the technology,and the technology can be applied to the prediction of effective source rocks with similar geological features.

Key words: tight lithology, total organic carbon, rock physics model, optimization, Bayesian, well-seismic joint

中图分类号: 

  • P631.4
[1] 赵政璋, 杜金虎.致密油气.北京:石油工业出版社, 2012:42-47. ZHAO Z Z, DU J H. Tight oil and gas. Beijing:Petroleum Industry Press, 2012:42-47.
[2] 张厚福, 方朝亮, 高先志, 等.石油地质学.北京:石油工业出版社, 1999:86-89. ZHANG H F, FANG C L, GAO X Z, et al. Petroleum geology. Beijing:Petroleum Industry Press, 1999:86-89.
[3] PASSEY Q R, CREANEY S, KULLAJ B, et al. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 1990, 74(12):1777-1794.
[4] ZHU Y P, XU S Y. Improved rock-physics model for shale gas reservoirs. SEG Technical Program Expanded Abstracts, 2012:1-5.
[5] 胡曦, 王兴志, 李宜真, 等. 利用测井信息计算页岩有机质丰度:以川南长宁地区龙马溪组为例. 岩性油气藏, 2016, 28(5):107-112. HU X, WANG X Z, LI Y Z, et al. Using log data to calculate the organic matter abundance in shale:a case study from Longmaxi Formation in Changning area, southern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):107-112.
[6] 郭龙, 陈践发, 苗忠英. 一种新的TOC含量拟合方法研究与应用. 天然气地球科学, 2009, 20(6):951-956. GUO L, CHEN J F, MIAO Z Y. Study and application of a new overlay method of the TOC content. Natural Gas Geoscience, 2009, 20(6):951-956.
[7] 闫建平, 梁强, 耿斌, 等.湖相泥页岩地球化学参数测井计算方法及应用:以沾化凹陷渤南洼陷沙三下亚段为例.岩性油气藏, 2017, 29(4):108-116. YAN J P, LIANG Q, GENG B, et al. Log calculation method of geochemical parameters of lacustrine shale and its application:a case of lower Es 3 in Bonan subsag, Zhanhua Sag. Lithologic Reservoirs, 2017, 29(4):108-116.
[8] 严伟, 刘帅, 冯明刚, 等.四川盆地丁山区块页岩气储层关键参数测井评价方法.岩性油气藏, 2019, 31(3):95-104. YAN W, LIU S, FENG M G, et al. Well logging evaluation methods of key parameters for shale gas reservoir in Dingshan block, Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):95-104.
[9] 许杰, 何治亮, 董宁, 等. 含气页岩有机碳含量地球物理预测. 石油地球物理勘探, 2013, 48(增刊1):64-68. XU J, HE Z L, DONG N, et al. Total organic carbon content prediction of gas-bearing shale with geophysical methods. Oil Geophysics Prospecting, 2013, 48(Suppl 1):64-68.
[10] 尹正武, 陈超, 彭嫦姿. 拟声波反演技术在优质泥页岩储层预测中的应用:以焦石坝页岩气田为例.天然气工业, 2014, 34(12):33-37. YIN Z W, CHEN C, PENG C Z. Application of pseudo-acoustic impedance inversion to quality shale reservoir prediction:a case study of the Jiaoshiba shale gas field, Sichuan Basin. Natural Gas Industry, 2014, 34(12):33-37.
[11] 陶倩倩, 李达, 杨希冰, 等.利用分频反演技术预测烃源岩.石油地球物理勘探, 2015, 50(4):706-713. TAO Q Q, LI D, YANG X B, et al. Hydrocarbon source rock prediction with frequency-divided inversion. Oil Geophysics Prospecting, 2015, 50(4):706-713.
[12] 周华建.基于叠前OVT域偏移的河道砂体预测方法.岩性油气藏, 2019, 31(4):112-120. ZHOU H J. Prediction method of channel sand body based on prestack migration in OVT domain. Lithologic Reservoirs, 2019, 31(4):112-120.
[13] 石战战, 王元君, 唐湘蓉, 等.一种基于时频域波形分类的储层预测方法.岩性油气藏, 2018, 30(4):98-104. SHI Z Z, WANG Y J, TANG X R, et al. Reservoir prediction based on seismic waveform classification in time-frequency domain. Lithologic Reservoirs, 2018, 30(4):98-104.
[14] 赵万金, 唐传章, 王孟华, 等.湖相致密复杂岩性地震识别技术. 石油学报, 2015, 36(增刊1):59-67. ZHAO W J,TANG C Z,WANG M H,et al. A seismic recognition technology of lacustrine complex tight lithology. Acta Petrolei Sinica, 2015, 36(Suppl 1):59-67.
[15] 葛瑞.马沃克, 塔潘.木克基, 杰克.德沃金.岩石物理手册:孔隙介质中地震分析工具.徐海滨, 戴建春, 译.合肥:中国科学技术大学出版社, 2008:90-95. MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook:Tools for seismic analysis in porous media. XU H B, DAI J C, trans. Hefei:University of Science and Technology of China Press, 2008:90-95.
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[3] 袁成, 苏明军, 倪长宽. 基于稀疏贝叶斯学习的薄储层预测方法及应用[J]. 岩性油气藏, 2021, 33(1): 229-238.
[4] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[5] 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128.
[6] 蒋德鑫, 姜正龙, 张贺, 杨舒越. 烃源岩总有机碳含量测井预测模型探讨——以陆丰凹陷文昌组为例[J]. 岩性油气藏, 2019, 31(6): 109-117.
[7] 石战战, 夏艳晴, 周怀来, 王元君. 一种联合SBL和DTW的叠前道集剩余时差校正方法[J]. 岩性油气藏, 2019, 31(3): 86-94.
[8] 钟光海,谢 冰,周 肖. 页岩气测井评价方法研究[J]. 岩性油气藏, 2015, 27(4): 96-102.
[9] 熊镭,张超谟,张冲,谢冰,丁一,韩淑敏. A 地区页岩气储层总有机碳含量测井评价方法研究[J]. 岩性油气藏, 2014, 26(3): 74-78.
[10] 谢伟彪,殷秋丽,刘迪仁,袁继煌,陈建. 基于多矿物分析的砂砾岩稠油储层测井评价[J]. 岩性油气藏, 2013, 25(3): 102-105.
[11] 王辉, 张玉芬. 基于模型的叠前数据多参数非线性反演[J]. 岩性油气藏, 2008, 20(2): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .