岩性油气藏 ›› 2024, Vol. 36 ›› Issue (3): 172–179.doi: 10.12108/yxyqc.20240316

• 石油工程与油气田开发 • 上一篇    下一篇

考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征

钟会影1, 余承挚1, 沈文霞1, 毕永斌1,2, 伊然3, 倪浩铭4   

  1. 1. 东北石油大学 提高采收率教育部重点实验室, 黑龙江 大庆 163318;
    2. 中国石油冀东油田公司南堡油田作业区, 河北 唐山 063005;
    3. 中国石油大庆油田公司 第六采油厂, 黑龙江 大庆 163114;
    4. 北京大学 鄂尔多斯能源研究院, 内蒙古 鄂尔多斯 017010
  • 收稿日期:2023-08-03 修回日期:2023-09-04 出版日期:2024-05-01 发布日期:2024-04-30
  • 第一作者:钟会影(1981—),女,博士,教授,主要从事孔隙尺度微观渗流机理及油藏数值模拟等方面的教学与研究工作。地址:(163318)黑龙江省大庆市高新技术产业开发区学府街 99 号。Email:zhhy987@126.com。
  • 基金资助:
    国家自然科学基金“考虑移动接触线特性的黏弹性流体驱油两相渗流相间微界面动力学行为研究”(编号:52374032)和黑龙江省自然科学基金项目“考虑复杂裂缝系统的致密油藏渗流理论及产能分析方法研究”(编号:LH2022E023)联合资助。

Characteristics of fracture interference between horizontal wells in tight reservoirs considering threshold pressure gradient

ZHONG Huiying1, YU Chengzhi1, SHEN Wenxia1, BI Yongbin1,2, YI Ran3, NI Haoming4   

  1. 1. Key Laboratory of Enhanced Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Nanpu Oilfield Operation Distric, PetroChina Jidong Oilfield Company, Tangshan 063005, Hebei, China;
    3. No. 6 Oil Production Plant, PetroChina Daqing Oilfield Company, Daqing 163114, Heilongjiang, China;
    4. Ordos Research Institute of Energy, Peking University, Ordos 017010, Inner Mongolia, China
  • Received:2023-08-03 Revised:2023-09-04 Online:2024-05-01 Published:2024-04-30

摘要: 针对致密油开发中体积压裂水平井裂缝干扰的问题,在三线性流模型的基础上,通过引入半渗透边界条件和井间干扰系数α,建立了考虑未改造区启动压力梯度的致密油藏水平井裂缝干扰渗流模型,对不同干扰情况下水平井井底压力动态及产量递减特征进行了研究。研究结果表明:①α 越大,裂缝干扰条数越多,压力动态曲线改造区线性流持续的时间越长,改造区窜流、拟稳定流动发生得越晚;未改造区启动压力梯度越大,拟稳定流发生的时间就越早。②裂缝导流能力越大,主裂缝线性流出现时间越早,两井裂缝导流能力越接近,α 对压力动态的影响较明显。③α越大,井底压力相对较低的水平井初期产量越高,至晚期后,产量下降越明显,无因次启动压力梯度越大,后期产量递减越快。④裂缝导流能力越小,前期阶段产量曲线越靠下,两井裂缝导流能力相近时,α 对产量的干扰相对较大。

关键词: 致密油藏, 井间干扰系数, 启动压力梯度, 裂缝导流能力, 渗流特征

Abstract: In view of the problems of fracture interference between horizontal wells during volume fracturing in tight reservoir development, based on the trilinear flow model, semi permeable boundary condition and interwell interference coefficient(α)were introduced to establish fracture interference percolation model of tight reservoir horizontal wells considering threshold pressure gradient in unreformed area, and the bottomhole pressure performance and production decline characteristics of horizontal wells under different interference conditions were studied. The results show that:(1)The larger the α, the more the number of fracture interference, the longer the duration of linear flow in the pressure dynamic curve transformation area, and the later the occurrence of cross flow and quasi stable flow in the transformation area. The larger the threshold pressure gradient in the unreformed area, the earlier the occurrence of quasi stable flow.(2)The larger the fracture conductivity, the earlier the linear flow of the main fracture occurs, and the closer the fracture conductivity of two wells. The influence of α on pressure dynamics is more obvious.(3)Horizontal wells with larger α and relatively lower bottom hole pressure have higher initial production, but in the later stage, the production decreases more significantly. The larger the dimensionless threshold pressure gradient, the faster the later production decline.(4)The smaller the fracture conductivity, the lower the production curves in the early stage. When the fracture conductivity of two wells is similar, α has a relatively large impact on production.

Key words: tight reservoir, interwell interference coefficient, threshold pressure gradient, fracture conductivity, percolation characteristics

中图分类号: 

  • TE319
[1] 郭旭洋,金衍,黄雷,等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺,2021,43(3):348-367. GUO Xuyang,JIN Yan,HUANG Lei,et al. Research status and discussion of horizontal well interference in shale oil and gas reservoirs[J]. Oil Drilling & Production Technology,2021,43(3):348-367.
[2] 闫霞,李小军,赵辉,等. 煤层气井井间干扰研究及应用[J]. 岩性油气藏,2015,27(2):126-132. YAN Xia,LI Xiaojun,ZHAO Hui,et al. Research on well interference of coalbed methane wells and its application[J]. Lithologic Reservoirs,2015,27(2):126-132.
[3] 罗攀,张磊,钟亚军,等. 延长油田陆相页岩体积压裂SRV优化研究[J]. 非常规油气,2022,9(4):129-133. LUO Pan,ZHANG Lei,ZHONG Yajun,et al. SRV optimization for volumetric fracturing of continental shale in Yanchang Oilfield[J]. Unconventional Oil & Gas,2022,9(4):129-133.
[4] 张意超,陈民锋,屈丹,等. X油田特低渗透油藏井网加密效果预测方法[J]. 岩性油气藏,2020,32(1):144-151. ZHANG Yichao,CHEN Minfeng,QU Dan,et al. Prediction method of well pattern infilling effect for ultra-low permeability reservoir in X oilfield[J]. Lithologic Reservoirs,2020,32(1):144-151.
[5] BHP E R,BLASINGAME T A. Optimizing the development of the Haynesville Shale:Lessons learned from well-to-well hydraulic fracture interference[R]. URTEC 2670079,2017.
[6] 蒋廷学,王海涛,卞晓冰,等. 水平井体积压裂技术研究与应用[J]. 岩性油气藏,2018,30(3):1-11. JIANG Tingxue,WANG Haitao,BIAN Xiaobing,et al. Volume fracturing technology for horizontal well and its application[J]. Lithologic Reservoirs,2018,30(3):1-11.
[7] 封猛,胡广文,丁心鲁,等. 吉木萨尔凹陷致密储层水平井压裂井间干扰分析[J]. 石油地质与工程,2018,32(3):108-110. FENG Meng,HU Guangwen,DING Xinlu,et al. Well interference analysis during horizontal well fracturing of dense reservoirs in Jimusar Sag[J]. Petroleum Geology and Engineering, 2018,32(3):108-110.
[8] 李继庆,刘曰武,黄灿,等. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏,2018,30(6):138-144. LI Jiqing,LIU Yuewu,HUANG Can,et al. Multi-stage fracturing horizontal well interference test model and its application[J]. Lithologic Reservoirs,2018,30(6):138-144.
[9] MOLINA O,ZEIDOUNI M. Analytical approach to determine the degree of interference between multi-fractured horizontal wells[R]. SPE 185765,2017.
[10] YU Wei,WU Kan,ZUO Lihua,et al. Physical models for interwell interference in shale reservoirs:Relative impacts of fracture hits and matrix permeability[R]. San Antonio,Texas:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2016.
[11] 杨兆中,苏洲,李小刚,等. 水平井交替压裂裂缝间距优化及影响因素分析[J]. 岩性油气藏,2015,27(3):11-17. YANG Zhaozhong,SU Zhou,LI Xiaogang,et al. Fracture spacing optimization for horizontal well alternating fracturing andinfluencing factors[J]. Lithologic Reservoirs,2015,27(3):11-17.
[12] KHODABAKHSHNEJAD A. Impact of Frac Hits on Production Performance:A case study in Marcellus Shale[R]. SPE 195296,2019.
[13] GALA D P,MANCHANDA R,SHARMA M M. Modeling of fluid injection in depleted parent wells to minimize damage due to frac-hits[R]. URTEC 2881265,2018.
[14] 李凌川,李克永. 泾河油田水平井密切割增能体积压裂探索及认识[J]. 非常规油气,2022,9(4):114-122. LI Lingchuan,LI Keyong. Exploration and cognition of intensive staged energizing volume fracturing for horizontal wells in Jinghe Oilfield[J]. Unconventional Oil & Gas,2022,9(4):114-122.
[15] 蔡晖,屈丹,陈民锋. 组合井网储量动用规律及水平井加密合理技术策略:以渤海HD油田为例[J]. 岩性油气藏,2021,33(4):147-155. CAI Hui,QU Dan,CHEN Minfeng. Reserve producing law of combined well pattern and technology strategy of horizontal well infilling:A case study from HD oilfield in Bohai Sea[J]. Lithologic Reservoirs,2021,33(4):147-155.
[16] 赵二猛. 体积压裂水平井试井分析及产能预测研究[D]. 大庆:东北石油大学,2017. ZHAO Ermeng. Study of well test analysis and productivity prediction for multiple-fractured horizontal wells[D]. Daqing:Northeast Petroleum University,2017.
[17] 任岚,黄鑫. 致密油藏体积压裂水平井分区复合产能模型[J]. 大庆石油地质与开发,2018,37(2):157-163. REN Lan,HUANG Xin. Composite productivity model for the volume fractured horizontal well districts in tight oil reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2018,37(2):157-163.
[18] 苏皓,雷征东,张荻萩,等. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏,2018,30(4):140-148. SU Hao,LEI Zhengdong,ZHANG Diqiu,et al. Volume fracturing parameters optimization of horizontal well in tight reservoir[J]. Lithologic Reservoirs,2018,30(4):140-148.
[19] 刘博,徐刚,纪拥军,等. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏,2020,32(6):172-180. LIU Bo,XU Gang,JI Yongjun,et al. Practice of volume fracturing and microseismic monitoring technology in horizontal wells of shale oil[J]. Lithologic Reservoirs,2020,32(6):172-180.
[20] FREDERICK J L,KELKAR M. Decline-curve analysis for solution-gas-drive reservoirs[R]. SPE 94859,2005.
[21] 何家欢,张苏,刘生国,等. 关于Laplace数值反演Stehfest算法适用性的一点思考[J]. 油气井测试,2015,24(4):18-20. HE Jiahuan,ZHANG Su,LIU Shengguo,et al. Thinking about the numerical inversion of Laplace transform and usability of Stehfest algorithm[J]. Well Testing,2015,24(4):18-20.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[3] 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J]. 岩性油气藏, 2022, 34(6): 152-159.
[4] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[5] 王付勇, 杨坤. 致密油藏孔喉分布特征对渗吸驱油规律的影响[J]. 岩性油气藏, 2021, 33(2): 155-162.
[6] 余燕, 周琳琅, 甘笑非, 胡燕, 淦文杰, 邓庄. 二次压力梯度三孔渗流模型及非线性渗流特征[J]. 岩性油气藏, 2020, 32(5): 143-150.
[7] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[8] 姜瑞忠, 沈泽阳, 崔永正, 张福蕾, 张春光, 原建伟. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏, 2018, 30(6): 131-137.
[9] 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计[J]. 岩性油气藏, 2017, 29(1): 135-139.
[10] 严向阳, 王腾飞, 何双喜, 申贝贝, 徐永辉, 陈林. 过量顶替液作业下压裂水平气井的产能模拟[J]. 岩性油气藏, 2017, 29(1): 140-146.
[11] 郑 茜, 张小莉, 王国民, 杜江民, 张子介, 钟高润. 扎哈泉地区上干柴沟组致密油烃源岩测井评价方法[J]. 岩性油气藏, 2015, 27(3): 115-121.
[12] 焦立新,刘俊田,李留中,韩 成,张 品,龙 飞. 三塘湖盆地沉凝灰岩致密油藏测井评价技术与应用[J]. 岩性油气藏, 2015, 27(2): 83-91.
[13] 王新杰,唐海,佘龙,邹佳丽,周巨标,李祥珠. 低渗透油藏水平井裂缝参数优化研究[J]. 岩性油气藏, 2014, 26(5): 129-132.
[14] 熊健,曾山,王绍平. 低渗透油藏变导流垂直裂缝井产能模型[J]. 岩性油气藏, 2013, 25(6): 122-126.
[15] 李传亮,朱苏阳. 再谈启动压力梯度[J]. 岩性油气藏, 2013, 25(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .