岩性油气藏 ›› 2017, Vol. 29 ›› Issue (6): 5159.doi: 10.3969/j.issn.1673-8926.2017.06.007
刘再振, 刘玉明, 李洋冰, 柳雪青, 王月胜, 王海燕
LIU Zaizhen, LIU Yuming, LI Yangbing, LIU Xueqing, WANG Yuesheng, WANG Haiyan
摘要: 为阐明鄂尔多斯盆地神府地区太原组砂岩储层特征及其致密化成因,利用铸体薄片、扫描电镜、阴极发光及高压压汞等资料,分析胶结物及其与碎屑颗粒的胶结、交代作用,并研究了储层成岩序列、各类胶结物与孔隙的含量、孔隙度的演化过程等。结果表明:神府地区太原组储层以中-粗岩屑砂岩和长石岩屑砂岩为主,孔隙度为0.20%~12.00%,平均为6.95%,渗透率为0.10~5.00 mD,平均为0.91 mD,属于典型的低孔-特低孔、特低渗的致密砂岩储层;孔隙结构主要为小孔细喉和小孔微喉型;在孔隙演化中压实作用使孔隙度减少约15.5%,胶结作用减少孔隙约10.4%,溶蚀作用增加孔隙约4.41%,计算现今平均孔隙度为7.17%,与实测平均孔隙度6.95%相当。早期压实作用与晚期碳酸盐胶结作用是研究区储层致密的主要原因,而溶蚀作用有利于各类次生孔隙的发育,是改善储层孔渗性的关键因素。
中图分类号:
[1] 姚泾利, 唐俊, 庞国印, 等.鄂尔多斯盆地白豹-华池地区长8段孔隙度演化定量模拟.天然气地球科学, 2013, 24(1):38-46. YAO J L, TANG J, PANG G Y, et al. Quantitative simulation on porosity-evolution in member 8 of Yanchang Formation of Baibao-Huachi area, Ordos Basin. Natural Gas Geoscience, 2013, 24(1):38-46. [2] 廖朋, 唐俊, 王凯, 等.砂岩成岩过程中的孔隙演化定量模拟——以鄂尔多斯盆地安塞地区长8油层组储层为例. 岩性油气藏, 2014, 26(5):15-22. LIAO P, TANG J, WANG K, et al. Quantitative simulation on pore evolution in diagenetic process of sandstone:a case study from Chang 8 oil reservoir set in Ansai area, Ordos Basin. Lithologic Reservoirs, 2014, 26(5):15-22. [3] ATHY L F. Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 1930, 14(1):1-24. [4] 陈发景, 田世澄.压实与油气运移.武汉:中国地质大学出版社, 1989:113-134. CHEN F J, TIAN S C. Compaction and oil or gas migration. Wuhan:China University of Geoscience Press, 1989:113-134. [5] 刘震, 邵新军, 金博, 等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响.现代地质, 2007, 21(1):125-132. LIU Z, SHAO X J, JIN B, et al. Co-effect of depth and burial time on the evolution of porosity for clastic rocks during the stage of compaction. Geoscience, 2007, 21(1):125-132. [6] 潘高峰, 刘震, 赵舒, 等.砂岩孔隙度演化定量模拟方法——以鄂尔多斯盆地镇泾地区延长组为例.石油学报, 2011, 32(2):249-256. PAN G F, LIU Z, ZHAO S, et al. Quantitative simulation of sandstone porosity evolution:a case from Yanchang Formation of the Zhenjing area, Ordos Basin. Acta Petrolei Sinica, 2011, 32(2):249-256. [7] 孟元林, 王粤川, 牛嘉玉, 等.储层孔隙度预测与有效天然气储层确定——以渤海湾盆地鸳鸯沟地区为例.天然气工业, 2007, 27(6):42-44. MENG Y L, WANG Y C, NIU J Y, et al. Prediction of reservoir porosity and determination of effective gas reservoirs:taking Yuanyanggou area of Bohai Bay Basin as an example. Natural Gas Industry, 2007, 27(6):42-44. [8] 王瑞飞, 沈平平, 赵良金.深层储集层成岩作用及孔隙度演化定量模型——以东濮凹陷文东油田沙三段储集层为例.石油勘探与开发, 2011, 38(5):552-559. WANG R F, SHEN P P, ZHAO L J. Diagenesis of deep sandstone reservoir and a quantitative model of porosity evolution:taking the third member of Shahejie Formation in the Wendong Oilfield, Dongpu Sag as an example. Petroleum Exploration and Development, 2011, 38(5):552-559. [9] 潘新志, 叶建平, 孙新阳, 等.鄂尔多斯盆地神府地区中低阶煤层气勘探潜力分析.煤炭科学技术, 2015, 43(9):65-70. PAN X Z, YE J P, SUN X Y, et al. Analysis on exploration potential of mid-low rank coalbed methane in Shenfu area of Ordos Basin. Coal Science and Technology, 2015, 43(9):65-70. [10] 樊爱萍, 赵娟, 杨仁超, 等.苏里格气田东二区山1段、盒8段储层孔隙结构特征.天然气地球科学, 2011, 22(3):482-487. FAN A P, ZHAO J, YANG R C, et al. Pore structure of reservoir rocks in Shan 1 and He 8 members, the EastⅡblock of Sulige gas field. Natural Gas Geoscience, 2011, 22(3):482-487. [11] 郝乐伟, 王琪, 唐俊.储层岩石微观孔隙结构研究方法与理论综述.岩性油气藏, 2013, 25(5):123-128. HAO L W, WANG Q, TANG J. Research progress of reservoir microscopic pore structure. Lithologic Reservoirs, 2013, 25(5):123-128. [12] 李永胜, 刘学刚, 章志锋, 等.鄂尔多斯盆地姬塬油田长8储层微观孔隙结构特征.石油化工应用, 2013, 32(4):63-69. LI Y S, LIU X G, ZHANG Z F, et al. Study microscopic pore structure characteristics of Chang 8 reservoir of Jiyuan oilfield by capillary curves. Petrochemical Industry Application, 2013, 32(4):63-69. [13] 张宪国, 张涛, 林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价.岩性油气藏, 2013, 25(6):40-45. ZHANG X G, ZHANG T, LIN C Y. Pore structure evolution of low permeability reservoir based on pore fractal features. Lithologic Reservoirs, 2013, 25(6):40-45. [14] 曹剑, 张义杰, 胡文瑄, 等.油气储层自生高岭石发育特点及其对物性的影响.矿物学报, 2005,25(4):367-373. CAO J, ZHANG Y J, HU W X, et al. Developing characteristics of kaolinite in central Junggar Basin and their effect on the reservoir quality. Acta Mineralogica Sinica, 2005, 25(4):367-373. [15] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organicinorganic interactions and sandstone diagenesis. AAPG Bulletin, 1989, 73(1):1-23. [16] HUNT J M. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 1990, 74(1):1-12. [17] 国家经济贸易委员会. 碎屑岩成岩阶段划分标准:SY/T 5477-2003.北京:石油工业出版社, 2003:1-4. State Economic and Trade Commission. The division of diagenetic stages in clastic rocks:SY/T5477-2003. Beijing:Petroleum Industry Press, 2003:1-4. [18] 张莹莹, 黄思静.华庆地区长6油层组方解石胶结物特征.岩性油气藏, 2012, 24(2):48-52. ZHANG Y Y, HUANG S J. Characteristics of calcite cements of Chang 6 oil reservoir set in Huaqing area. Lithologic Reservoirs, 2012, 24(2):48-52. [19] 朱国华, 章卫平.煤系地层砂岩成岩作用和孔隙演化研究——以长广地区龙潭组为例.石油勘探与开发, 1993, 20(1):42-50. ZHU G H, ZHANG W P. A study of digenesis and the evolution of porosity of the sandstones coaliferous Formations:taking Longtan group in Changguang region as an example. Petroleum Exploration and Development, 1993, 20(1):42-50. [20] 郑浚茂, 应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式.石油学报, 1997, 18(4):19-24. ZHENG J M, YING F X. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bearing strata.Acta Petrolei Sinica, 1997, 18(4):19-24. [21] 远光辉, 操应长, 杨田, 等.论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力.地学前缘, 2013, 20(5):207-219. YUAN G H, CAO Y C, YANG T, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir. Earth Science Frontiers, 2013, 20(5):207-219. [22] BEARD D C, WEYL P K. Influence of texture on porosity and permeability of unsolidated sand. AAPG Bulletin, 1973, 57(2):349-369. [23] SCHERER M. Parameters influencing porosity in sandstones a model for sandstone porosity prediction. AAPG Bulletin, 1987, 71(5):485-491. [24] 张兴良, 田景春, 王峰, 等.致密砂岩储层成岩作用特征与孔隙演化定量评价——以鄂尔多斯盆地高桥地区二叠系下石盒子组盒8段为例. 石油与天然气地质, 2014, 35(2):212-217. ZHANG X L, TIAN J C, WANG F, et al. Diagenetic characteristics and quantitative porosity estimation of tight sandstone reservoirs:a case from the 8 th member of Permian Xiashihezi Formation in the Gaoqiao region, Ordos Basin. Oil & Gas Geology, 2014, 35(2):212-217. [25] 思玉琥, 郝世彦, 张林森, 等.延安地区上三叠统长6期储层成岩作用及孔隙演化.特种油气藏, 2011, 18(6):36-39. SI Y H, HAO S Y, ZHANG L S, et al. Diageneses of the Upper Triassic Chang 6 Formation in Yan' an area and pore evolution. Special Oil & Gas Reservoirs, 2011, 18(6):36-39. |
[1] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[2] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
[3] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[4] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[5] | 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171. |
[6] | 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142. |
[7] | 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165. |
[8] | 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133. |
[9] | 韩培慧, 闫坤, 曹瑞波, 高淑玲, 佟卉. 聚驱后油层提高采收率驱油方法[J]. 岩性油气藏, 2019, 31(2): 143-150. |
[10] | 景紫岩, 张佳, 李国斌, 竺彪, 韩国庆, 刘双双. 泡沫混排携砂解堵机理及影响因素[J]. 岩性油气藏, 2018, 30(5): 154-160. |
[11] | 马力, 欧阳传湘, 谭钲扬, 王长权, 宋岩, 林飞. 低渗透油藏CO2驱中后期提效方法研究[J]. 岩性油气藏, 2018, 30(2): 139-145. |
[12] | 杨红, 王宏, 南宇峰, 屈亚宁, 梁凯强, 江绍静. 油藏CO2驱油提高采收率适宜性评价[J]. 岩性油气藏, 2017, 29(3): 140-146. |
[13] | 刘晨, 王凯, 王业飞, 周文胜. 针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究[J]. 岩性油气藏, 2017, 29(3): 152-158. |
[14] | 郭 平,许清华,孙 振,杜建芬,汪周华. 天然气藏 CO2驱及地质埋存技术研究进展[J]. 岩性油气藏, 2016, 28(3): 6-11. |
[15] | 李海涛,李 颖,李亚辉,王 科. 低盐度注水提高碳酸盐岩油藏采收率[J]. 岩性油气藏, 2016, 28(2): 119-126. |
|