岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 10–19.doi: 10.12108/yxyqc.20210402

• 油气地质 • 上一篇    下一篇

川东南志留系小河坝组致密砂岩孔隙类型及成因

张文凯1,2, 施泽进1,2, 田亚铭3, 王勇3, 胡修权1,2, 李文杰1,   

  1. 1. 成都理工大学 能源学院, 成都 610059;
    2. 成都理工大学 "油气藏地质及开发工程" 国家重点实验室, 成都 610059;
    3. 成都理工大学 地球科学学院, 成都 610059
  • 收稿日期:2020-12-21 修回日期:2021-03-16 出版日期:2021-08-01 发布日期:2021-08-06
  • 第一作者:张文凯(1989-),男,成都理工大学在读博士研究生,研究方向为石油地质与构造地质。地址:(610059)四川省成都市成华区二仙桥东三路1号。Email:zwk2013cdut@163.com
  • 通信作者: 施泽进(1965-),男,博士,教授,从事石油地质学与构造地质学的教学与科研工作。Email:286615079@qq.com。
  • 基金资助:
    国家自然科学基金“四川盆地东南部及周缘震旦系—寒武系微生物岩成岩作用与孔隙演化”(编号418721374)资助

Pore types and genesis of tight sandstone of Silurian Xiaoheba Formation in southeastern Sichuan Basin

ZHANG Wenkai1,2, SHI Zejin1,2, TIAN Yaming3, WANG Yong3, HU Xiuquan1,2, LI Wenjie1,   

  1. 1. College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
  • Received:2020-12-21 Revised:2021-03-16 Online:2021-08-01 Published:2021-08-06

摘要: 为研究川东南地区志留系小河坝组海相致密砂岩储层微观孔隙特征及形成机理,开展了岩石薄片鉴定、阴极发光、电子探针、场发射扫描电镜和高压压汞测试等实验分析。结果表明:①小河坝组致密储层孔隙类型有残余原生粒间孔、粒间溶孔、粒内溶孔、基质孔、晶间孔及微裂缝,其中次生溶孔(粒间溶孔和粒内溶孔)占主导,被溶物质主要为碎屑长石和方解石胶结物;②孔隙发育情况受沉积微相、长石溶蚀作用和下伏烃源岩生烃强度共同影响,离生烃中心越近、长石含量越高的远砂坝砂岩中,次生溶孔最为发育;③双流坝—冷水溪一带微观孔隙最为发育,储层物性相对较好。研究结果为川东南地区致密砂岩气勘探指明了新方向。

关键词: 致密砂岩, 孔隙类型, 长石溶蚀, 小河坝组, 川东南

Abstract: In order to study the micro pore characteristics and formation mechanism of marine tight sandstone reservoirs of Silurian Xiaoheba Formation in southeastern Sichuan Basin,thin section identification,cathodoluminescence,electron probe,field emission scanning electron microscopy and high-pressure mercury injection test were carried out. The results show that: (1)The pore types of tight sandstone reservoirs of Xiaoheba Formation include residual primary intergranular pores,intergranular dissolved pores,intragranular dissolved pores, matrix pores,intercrystalline pores and microfractures. Secondary dissolved pores(intergranular dissolved pores and intragranular dissolved pores)were dominant,which were mainly formed by the dissolution of clastic feldspar and calcite cements.(2)The development of pores is affected by sedimentary microfacies,feldspar dissolution and hydrocarbon generation intensity of underlying source rocks. Within the distal bar sandstones,when the sandstones are closer to the hydrocarbon generation center and higher of feldspar contents,the secondary dissolved pores are the most developed.(3)Micro pores are developed well in Shuangliuba-Lengshuixi area and this area maintains relatively good reservoir properties. The results indicate a new direction for tight sandstone gas exploration in southeast Sichuan Basin.

Key words: tight sandstone, pore types, feldspar dissolution, Xiaoheba Formation, southeastern Sichuan Basin

中图分类号: 

  • TE122.2
[1] OLSEN H, BRIEDIS N A, RENSHAW D. Sedimentological analysis and reservoir characterization of a multi-darcy,billion barrel oil field:The Upper Jurassic shallow marine sandstones of the Johan Sverdrup field,North Sea,Norway. Marine and Petroleum Geology, 2017, 84:102-134.
[2] HIGGS K E, ARNOT M J, BROWNE G H, et al. Reservoir potential of Late Cretaceous terrestrial to shallow marine sandstones,Taranaki Basin,New Zealand. Marine and Petroleum Geology, 2010, 27:1849-1871.
[3] 曹思佳, 孙增玖, 党虎强, 等.致密油薄砂体储层预测技术及应用实效:以松辽盆地敖南区块下白垩统泉头组为例.岩性油气藏, 2021, 33(1):239-247. CAO S J, SUN Z J, DANG H Q, et al. Prediction technology of tight oil thin sand reservoir and its application effect:A case study of Lower Cretaceous Quantou Formation in Aonan block, Songliao Basin. Lithologic Reservoirs, 2021, 33(1):239-247.
[4] HALBOUTY M T. Giant oil and gas fields of the decade 1968-1978. AAPG memoir 30, 1980.
[5] 宋文海.川东南下志留统小河坝砂岩含气地质条件论述:一个未来的勘探区块.天然气勘探与开发, 1998, 21(2):1-5. SONG W H. The discussion of geological conditions of the Xiaoheba sandstone gas of the Lower Silurian in southeastern Sichuan:A future exploration block. Natural Gas Exploration and Development, 1998, 21(2):1-5.
[6] 王勇, 施泽进, 刘亚伟, 等.鄂西渝东地区石柱复向斜志留系小河坝组致密砂岩成岩作用. 石油与天然气地质, 2011, 32(1):75-82. WANG Y, SHI Z J, LIU Y W, et al. Diagenesis of tight sandstone in the Silurian Xiaoheba Formation of the Shizhu synclinorium, western Hubei-eastern Chongqing area. Oil & Gas Geology, 2011, 32(1):75-82.
[7] 韩京, 陈波, 张家铭, 等.鄂西渝东地区志留系小河坝组砂岩储层特征及成岩相研究.科学技术与工程, 2016, 16(30):52-60. HAN J, CHEN B, ZHANG J M, et al. Reservoir characteristics and diagenetic facies of Xiaoheba Formation sandstone of Silurian in west Hubei to east Chongqing province. Science Technology and Engineering, 2016, 16(30):52-60.
[8] 朱志军, 陈洪德.川东南地区志留系小河坝组砂岩特征及物源分析.吉林大学学报(地球科学版), 2012, 42(6):1590-1600. ZHU Z J, CHEN H D. Sandstone characteristics and provenance analysis of the sandstone in Silurian Xiaoheba Formation in southeastern Sichuan province,China. Journal of Jilin University (Earth Science Edition), 2012, 42(6):1590-1600.
[9] 张文凯, 施泽进, 田亚铭, 等.联合高压压汞和恒速压汞实验表征致密砂岩孔喉特征.断块油气田, 2021, 28(1):14-20. ZHANG W K, SHI Z J, TIAN Y M, et al. The combination of highpressure mercury injection and rate-controlled mercury injection to characterize the pore-throat structure in tight sandstone reservoirs. Fault-Block Oil & Gas Field, 2021, 28(1):14-20.
[10] 杨威, 魏国齐, 李德江, 等.四川盆地志留系小河坝组砂岩油气地质特征与勘探方向.天然气地球科学, 2020, 31(1):1-12. YANG W, WEI G Q, LI D J, et al. Hydrocarbon accumulation conditions and exploration direction of Silurian Xiaoheba Formation in Sichuan Basin and its adjacent areas,SW China. Natural Gas Geoscience, 2020, 31(1):1-12.
[11] 朱志军, 陈洪德, 林良彪, 等.黔北-川东南志留系层序格架下的沉积体系演化特征及有利区带预测.沉积学报, 2010, 28(2):243-253. ZHU Z J, CHEN H D, LIN L B, et al. Depositional system evolution characteristics in the frame work of sequences of Silurian and prediction of favorable zones in the northern Guizhou-southeastern Sichuan. Acta Sedimentologica Sinica, 2010, 28(2):243-253.
[12] 何利, 谭钦银, 王瑞华, 等.川东南早志留世石牛栏期沉积相、沉积模式及其演化.矿物岩石, 2013, 33(4):96-106. HE L, TAN Q Y, WANG R H, et al. Sedimentary facies, sedimentary model and evolution of the Shiniulan Formation of Early Silurian in the southeast Sichuan. Journal of Mineralogy and Petrology, 2013, 33(4):96-106.
[13] 郭英海, 李壮福, 李大华, 等.四川地区早志留世岩相古地理. 古地理学报, 2004, 6(1):20-29. GUO Y H, LI Z F, LI D H, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area. Journal of Palaeogeography, 2004, 6(1):20-29.
[14] YUAN H F, LIANG J J, GONG D Y, et al. Formation and evolution of Sinian oil and gas pools in typical structures,Sichuan Basin, China. Petroleum Science, 2012, 9(2):129-140.
[15] 陈冬霞, 庞雄奇, 杨克明, 等.川西坳陷深层叠复连续型致密砂岩气藏成因及形成过程. 吉林大学学报(地球科学版), 2016, 46(6):1611-1623. CHEN D X, PANG X Q, YANG K M, et al. Genetic mechanism and formation of superimposed continuous tight sandstone reservoir in deep Xujiahe Formation in Western Sichuan Depression. Journal of Jilin University(Earth Science Edition), 2016, 46(6):1611-1623.
[16] 祝海华, 钟大康, 张亚雄, 等.川南地区三叠系须家河组致密砂岩孔隙类型及物性控制因素.石油与天然气地质, 2014, 35(1):65-76. ZHU H H, ZHONG D K, ZHANG Y X, et al. Pore types and controlling factors on porosity and permeability of Upper Triassic Xujiahe tight sandstone reservoir in southern Sichuan Basin. Oil & Gas Geology, 2014, 35(1):65-76.
[17] 王朋, 孙灵辉, 王核, 等.鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素.岩性油气藏, 2020, 32(5):63-72. WANG P, SUN L H, WANG H, et al. Reservoir characteristics and controlling factors of Chang 6 of Yanchang Formation in Wuqi area,Ordos Basin. Lithologic Reservoirs, 2020, 32(5):63-72.
[18] 朱志军, 陈洪德, 林良标, 等.渝东-湘西地区志留纪小河坝组层序岩相古地理特征及演化.地层学杂志, 2012, 36(3):662-671. ZHU Z J, CHEN H D, LIN L B, et al. Sequence-based lithofacies and palaeogeography of the Silurian Xiaoheba Formation in eastern Chongqing city and western Hunan province. Journal of Stratigraphy, 2012, 36(3):662-671.
[19] BARTH T, BJØRLYKKE K. Organic acids from source rock maturation:Generation potentials,transport mechanisms and relevance for mineral diagenesis. Geochemistry, 1993, 8(4):325-337.
[20] 王玉满, 李新景, 董大忠, 等.上扬子地区五峰组-龙马溪组优质页岩沉积主控因素.天然气工业, 2017, 37(4):9-20. WANG Y M, LI X J, DONG D Z, et al. Application main factors controlling the sedimentation of high-quality shale in WufengLongmaxi Formation,Upper Yangtze region. Natural Gas Industry, 2017, 37(4):9-20.
[21] 刘树根, 孙玮, 李智武, 等.四川叠合盆地海相碳酸盐岩油气分布特征及其构造主控因素.岩性油气藏, 2016, 28(5):1-17. LIU S G, SUN W, LI Z W, et al. Distribution characteristics of marine carbonate reservoirs and their tectonic controlling factors across the Sichuan superimposed basin. Lithologic Reservoirs, 2016, 28(5):1-17.
[22] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organic-inorganic interactions and sandstone diagenesis. AAPG Bulletin, 1989, 73(1):1-23.
[23] 张萌, 黄思静, 王麒翔, 等.碎屑岩成岩过程中各种造岩矿物溶解特征的热力学模型.新疆地质, 2006, 24(2):187-191. ZHANG M, HUANG S J, WANG Q X, et al. Thermodynamics model for the characteristic of the dissolution of primary minerals related to clastic diagenesis. Xinjiang Geology, 2006, 24(2):187-191.
[24] 徐二社, 李志明, 杨振恒.彭水地区五峰-龙马溪组页岩热演化史及生烃史研究:以PY1井为例.石油实验地质, 2015, 37(4):494-499. XU E S, LI Z M, YANG Z H. Thermal and hydrocarbon generation history of Wufeng and Longmaxi shales in Pengshui area, eastern Sichuan Basin:A well PY1 case study. Petroleum Geology & Experiment, 2015, 37(4):494-499.
[25] 周文, 徐浩, 余谦, 等.四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因.岩性油气藏, 2016, 28(5):18-25. ZHOU W, XU H, YU Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas. Lithologic Reservoirs, 2016, 28(5):18-25.
[26] 杨平,印峰,余谦,等. 四川盆地东南缘有机质演化异常与古地温场特征. 天然气地球科学, 2015, 26(7):1299-1309. YANG P,YIN F,YU Q,et al. Evolution anomaly of organic matter and characteristics of palaeogeothermal field in the southeast edge of Sichuan Basin. Natural Gas Geoscience, 2015, 26(7):1299-1309.
[1] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[2] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[3] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[4] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[5] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[6] 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30.
[7] 曾治平, 柳忠泉, 赵乐强, 李艳丽, 王超, 高平. 准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J]. 岩性油气藏, 2023, 35(1): 25-35.
[8] 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95.
[9] 米伟伟, 谢小飞, 曹红霞, 马强, 杜永慧, 张琼, 邓长生, 宋珈萱. 鄂尔多斯盆地东南部二叠系山2—盒8段致密砂岩储层特征及主控因素[J]. 岩性油气藏, 2022, 34(6): 101-117.
[10] 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3): 142-153.
[11] 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20.
[12] 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38.
[13] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[14] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[15] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .