岩性油气藏 ›› 2023, Vol. 35 ›› Issue (3): 161–168.doi: 10.12108/yxyqc.20230314

• 石油工程与油气田开发 • 上一篇    

斜井各向异性地层随钻侧向测井响应规律及快速校正方法

李丰丰1, 倪小威2, 徐思慧2, 魏新路3, 刘迪仁1   

  1. 1. 长江大学 油气资源与勘探技术教育部重点实验室, 武汉 430100;
    2. 中国石油塔里木油田公司 产能建设事业部, 新疆 库尔勒 841000;
    3. 中国石油集团测井有限公司 辽河分公司, 辽宁 盘锦 124000
  • 收稿日期:2022-08-15 修回日期:2022-09-05 发布日期:2023-04-25
  • 通讯作者: 刘迪仁(1965-),男,博士,教授,主要从事电法测井正反演、煤层气和复杂储层测井评价及光纤传感技术等方面的教学和研究工作。Email:liudr@yangtzeu.edu.cn。 E-mail:liudr@yangtzeu.edu.cn
  • 作者简介:李丰丰(1998—),男,长江大学在读硕士研究生,研究方向为电法测井正反演。地址:(430000)湖北省武汉市蔡甸区大学路111号。Email:cj21701@163.com。
  • 基金资助:
    国家重点研发计划项目子课题 “地下及井中地球物理勘探技术与装备”(编号: 2018YFC060330502) 资助。

Response characteristics and correction of LWD laterolog in anisotropic formations and deviated boreholes

LI Fengfeng1, NI Xiaowei2, XU Sihui2, WEI Xinlu3, LIU Diren1   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China;
    2. Production Capacity Construction Division, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    3. Liaohe Branch of CNPC Logging Corporation, Panjin 124000, Liaoning, China
  • Received:2022-08-15 Revised:2022-09-05 Published:2023-04-25

摘要: 采用有限元数值模拟方法与参数敏感性函数,模拟了螺绕环式随钻侧向测井仪在斜井各向异性地层中的响应特性;通过分析仪器对层厚/围岩、各向异性、井斜角的响应敏感程度,并基于正演结果分段拟合,针对不同的井斜角,提出一种井斜/各向异性快速校正的计算方法。研究结果表明:①当目的层厚度小于0.5 m时,仪器的响应受围岩影响严重;当目的层厚度为0.5~5.0 m时,仪器的响应同时受围岩和各向异性的影响;当目的层厚度大于5.0 m时,各向异性对仪器响应的影响占主导。②当井斜角小于30°时,测井响应受各向异性系数影响较小,视电阻率相差最大为2.5 Ω·m;当井斜角大于30°时,仪器响应受各向异性影响严重,不能反映地层水平电阻率。③井斜/各向异性校正法在电导性地层与厚度较大的电阻性地层中具有更好的校正效果。

关键词: 斜井, 各向异性, 随钻侧向测井, 探测深度, 分辨率, 敏感性, 有限元数值模拟

Abstract: The finite element numerical simulation method and parameter sensitivity function were used to simulate the response characteristics of toroidal coil excitation LWD laterolog instrument in anisotropic formation and deviated boreholes,the sensitivity of the instrument to the formation thickness/surrounding rock,anisotropy and well deviation angle were analyzed,and based on forward modeling results segment fitting,a calculation method for rapid correction of well deviation/anisotropy was proposed for different well deviation angles. The results show that:(1)When the thickness of the target layer is less than 0.5 m,the instrument response is seriously affected by the surrounding rocks. When the thickness is 0.5-5.0 m,the instrument response is affected by both the surrounding rock and anisotropy. When the thickness is greater than 5.0 m,the influence of anisotropy on the instrument response is dominant.(2)When the well deviation angle is less than 30 °,the logging response is less affected by the anisotropy coefficient,and the maximum difference of apparent resistivity is 2.5 Ω·m. When the well deviation angle is greater than 30 °,the instrument response is seriously affected by anisotropy and cannot reflect the horizontal resistivity of the formation.(3)This method has better correction effects in conductive formation and resistive formation with larger thickness.

Key words: deviated boreholes, anisotropy, LWD laterolog, investigation depth, resolution, sensitivity, finite element numerical simulation

中图分类号: 

  • TE353
[1] 林剑松,李盛清,刘忠华,等随钻划眼采集模式的过套管声波测井数值模拟与实验研究[J].地球物理学进展, 2021, 36(6):2496-2502. LIN Jiansong, LI Shengqing, LIU Zhonghua, et al. Numerical simulation and experimental research of through casing sonic logging with redressing LWD acquisition mode[J]. Progress in Geophysics, 2021, 36(6):2496-2502.
[2] 宋殿光,岳步江,狄帮让,等.近钻头电阻率测量理论及响应模拟[J].测井技术, 2019, 43(6):564-568. SONG Dianguang, YUE Bujiang, DI Bangrang, et al. Theory and response simulation of near-bit resistivity[J]. Well Logging Technology, 2019, 43(6):564-568.
[3] 许泽瑞,汪忠浩,王昌学,等.随钻电阻率测井响应分析与应用[J].岩性油气藏, 2012, 24(3):93-98. XU Zerui,WANG Zhonghao,WANG Changxue,et al. Response characteristics of LWD resistivity logging and its application[J]. Lithologic Reservoirs, 2012, 24(3):93-98.
[4] 杨震,杨锦舟,韩来聚,等.随钻方位电磁波界面探测性能分析[J].石油学报, 2016, 37(7):930-938. YANG Zhen, YANG Jinzhou, HAN Laiju, et al. Interface detection performance analysis of azimuthal electromagnetic while drilling[J]. Acta Petrolei Sinica, 2016, 37(7):930-938.
[5] 孙宏博,倪卫宁,李新,等.基于C4D技术的油基钻井液随钻侧向电阻率测井信号检测[J].中南大学学报(自然科学版), 2018, 49(5):1281-1288. SUN Hongbo, NI Weining, LI Xin, et al. Signal detection of lateral resistivity LWD based on C4D technique with oil-based drilling fluid[J]. Journal of Central South University (Science and Technology), 2018, 49(5):1281-1288.
[6] 张向林,刘新茹.裸眼井测井新技术进展[J].岩性油气藏, 2008, 20(2):91-96. ZHANG Xianglin, LIU Xinru. New development of logging techniques in open hole[J]. Lithologic Reservoirs, 2008, 20(2):91-96.
[7] 唐海全.随钻方位伽马数据成像处理方法[J].岩性油气藏, 2017, 29(1):110-115. TANG Haiquan. Image processing method of LWD azimuthal gamma data[J]. Lithologic Reservoirs, 2017, 29(1):110-115.
[8] 胡松,郭洪波,王昌学,等.水平井随钻电阻率与双侧向响应差异影响因素分析[J].地球物理学进展, 2017, 32(5):1999-2008. HU Song, GUO Hongbo, WANG Changxue, et al. Influence factors analysis of response characteristics difference between dual laterolog resistivity and LWD resistivity in horizontal well[J]. Progress in Geophysics, 2017, 32(5):1999-2008.
[9] 司兆伟,邓少贵,林发武,等.泥浆侵入各向异性地层阵列侧向测井响应数值模拟[J].石油地球物理勘探, 2020, 55(1):187-196. SI Zhaowei, DENG Shaogui, LIN Fawu, et al. Numerical simulation of array laterolog responses in anisotropic formation with mud inversion[J]. Oil Geophysical Prospecting, 2020, 55(1):187-196.
[10] 胡松,王敏,刘伟男.页岩水平井声波时差各向异性校正方法及其应用[J].石油学报, 2022, 43(1):58-66. HU Song, WANG Min, LIU Weinan. Anisotropy correction method for acoustic time difference in horizontal shale wells and its application[J]. Acta Petrolei Sinica, 2022, 43(1):58-66.
[11] 范宜仁,巫振观,王磊,等.大斜度井各向异性地层双感应测井响应特征研究[J].测井技术, 2016, 40(3):262-269. FAN Yiren, WU Zhenguan, WANG Lei, et al. Response characteristics of dual induction logging in anisotropic formation and high deviated wells[J]. Well Logging Technology, 2016, 40(3):262-269.
[12] 倪小威,徐观佑,冯加明,等.斜井中各向异性储层阵列侧向测井正演响应特性[J].断块油气田, 2017, 24(5):637-641. NI Xiaowei, XU Guanyou, FENG Jiaming, et al. Forward response of array lateral logging in anisotropic reservoir of inclined shaft[J]. Fault-Block Oil&Gas Field, 2017, 24(5):637-641.
[13] ARPS J J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem:US, US3305771[P]. 1967-02-21.
[14] GIANZERO S, CHEMALI R, LIN Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
[15] ORTENZI L, DUBOURG I, VAN O S R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2011, 53(3):197-207.
[16] 康正明,柯式镇,李新,等.基于随钻电阻率成像测井仪的洞穴评价模型理论研究[J].中南大学学报(自然科学版), 2021, 52(5):1542-1551. KANG Zhengming, KE Shizhen, LI Xin, et al. Theoretical study on cave evaluation model based on LWD resistivity imaging tool[J]. Journal of Central South University (Science and Technology), 2021, 52(5):1542-1551.
[17] PRAMMER M G, MORYS M, KNIZHNIK S, et al. A high-resolution LWD resistivity imaging tool-field testing in vertical and highly deviated boreholes[J]. Petrophysics, 2009, 50(1):49-66.
[18] KANG Zhengming, KE Shizhen, LI Xin, et al. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde. Appl[J]. Geophysics, 2018, 15:401-412.
[19] 李铭宇,柯式镇,康正明,等.螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J].石油钻探技术, 2018, 46(1):128-134. LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1):128-134.
[20] 张庚骥.电法测井[M].北京:石油工业出版社, 1984:40-42. ZHANG Gengji. Electrical logging[M]. Beijing:Petroleum Industry Press, 1984:40-42.
[21] 刘迪仁,夏培,万文春,等.水平井碳酸盐岩裂缝型储层双侧向测井响应特性[J].岩性油气藏, 2012, 24(3):1-4. LIU Diren, XIA Pei, WAN Wenchun, et al. Characteristics of dual laterolog response of carbonate fracture reservoirs in horizontal well[J]. Lithologic Reservoirs, 2012, 24(3):1-4.
[22] 张盼,邓少贵,胡旭飞,等.超深随钻方位电磁波测井探测特性及参数敏感性分析[J].地球物理学报, 2021, 64(6):2210-2219. ZHANG Pan, DENG Shaogui, HU Xufei, et al. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement[J]. Chinese Journal of Geophysics, 2021, 64(6):2210-2219.
[23] 邓少贵,蔡联云,王磊,等.基于电阻率敏感性函数的随钻电磁波测井探测特性研究[J].地球物理学报, 2020, 63(5):2096-2106. DENG Shaogui, CAI Lianyun, WANG Lei, et al. Research on detection characteristics of electromagnetic logging while drilling based on resistivity sensitivity function[J]. Chinese Journal of Geophysics, 2020, 63(5):2096-2106.
[24] 王贵清,袁雪花,苏沛强,等.井斜角对测量电阻率的影响及其校正方法[J].测井技术, 2021, 45(5):470-474. WANG Guiqing, YUAN Xuehua, SU Peiqiang, et al. Influence of deviation angle to the measuring resistivity and its correction method[J]. Well Logging Technology, 2021, 45(5):470-474.
[1] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[2] 张岩, 侯连华, 崔景伟, 罗霞, 林森虎, 张紫芸. 鄂尔多斯盆地三叠系长7富有机质段岩石热膨胀系数随温度演化特征及启示[J]. 岩性油气藏, 2022, 34(4): 32-41.
[3] 赵岩, 毛宁波, 陈旭. 基于时频域信噪比的自适应增益限反Q滤波方法[J]. 岩性油气藏, 2021, 33(4): 85-92.
[4] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[5] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[6] 刁瑞. 地震数据提高分辨率处理监控评价技术[J]. 岩性油气藏, 2020, 32(1): 94-101.
[7] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
[8] 熊山, 王学生, 张遂, 赵涛, 庞菲, 高磊. WXS油藏长期水驱储层物性参数变化规律[J]. 岩性油气藏, 2019, 31(3): 120-129.
[9] 薛丹, 张遂安, 吴新民, 李旭航, 杜军军, 卢晨刚. 下寺湾油田长7油层组页岩气储层敏感性实验[J]. 岩性油气藏, 2019, 31(3): 135-144.
[10] 任大忠, 张晖, 周然, 王茜, 黄海, 唐胜蓝, 金娜. 塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究[J]. 岩性油气藏, 2018, 30(6): 27-36.
[11] 刘文卿, 王孝, 胡书华, 张涛, 金保中. 测井与全方位道集联合各向异性参数建模及成像[J]. 岩性油气藏, 2018, 30(6): 83-88.
[12] 姜瑞忠, 沈泽阳, 崔永正, 张福蕾, 张春光, 原建伟. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏, 2018, 30(6): 131-137.
[13] 王新杰. 致密气藏压裂水平井产能计算方法[J]. 岩性油气藏, 2018, 30(5): 161-168.
[14] 杨应, 杨巍, 朱仕军. 基于EEMD的高分辨率层序地层划分方法[J]. 岩性油气藏, 2018, 30(5): 59-67.
[15] 韩令贺, 胡自多, 冯会元, 刘威, 杨哲, 王艳香. 井震联合网格层析各向异性速度建模研究及应用[J]. 岩性油气藏, 2018, 30(4): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郝乐伟,王琪,唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013, 25(5): 123 -128 .
[2] 何建华,丁文龙,付景龙,李昂,代鹏. 页岩微观孔隙成因类型研究[J]. 岩性油气藏, 2014, 26(5): 30 -35 .
[3] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137 -146 .
[4] 胡贺伟, 李慧勇, 许鹏, 陶莉, 华晓莉. 断裂密集带油气差异富集主控因素探讨——以歧口凹陷歧南断阶带为例[J]. 岩性油气藏, 2020, 32(5): 34 -45 .
[5] 余燕, 周琳琅, 甘笑非, 胡燕, 淦文杰, 邓庄. 二次压力梯度三孔渗流模型及非线性渗流特征[J]. 岩性油气藏, 2020, 32(5): 143 -150 .
[6] 李梦莹, 朱如凯, 胡素云. 海外陆相页岩油地质特征与资源潜力[J]. 岩性油气藏, 2022, 34(1): 163 -174 .
[7] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89 -102 .
[8] 王建功, 李江涛, 李翔, 高妍芳, 张平, 孙秀建, 白亚东, 左洺滔. 柴西地区新生界湖相微生物碳酸盐岩岩相组合差异性及控制因素[J]. 岩性油气藏, 2023, 35(3): 1 -17 .
[9] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29 -39 .
[10] 白杨, 张晓磊, 刚文哲, 张忠义, 杨尚儒, 庞锦莲, 曹晶晶, 侯云超. 鄂尔多斯盆地平凉北地区上三叠统长8段储层低含油饱和度油藏特征及成因[J]. 岩性油气藏, 2023, 35(3): 66 -75 .