岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 83–95.doi: 10.12108/yxyqc.20190210

• 油气地质 • 上一篇    下一篇

黔南坳陷下石炭统台间黑色岩系有机质富集特征及控制因素

丁江辉1,2,3, 张金川1,2, 李兴起1,2, 郎岳1,2, 郑玉岩1,2, 许龙飞1,2   

  1. 1. 中国地质大学(北京)能源学院, 北京 100083;
    2. 国土资源部页岩气资源战略评价重点实验室, 北京 100083;
    3. 中国地质大学构造与油气资源教育部重点实验室, 武汉 430074
  • 收稿日期:2018-10-26 修回日期:2018-12-25 出版日期:2019-03-21 发布日期:2019-03-21
  • 通讯作者: 张金川(1964-),男,博士,教授,博士生导师,主要从事非常规天然气地质、油气成藏机理与分布规律及油气资源评价等方面的教学与研究工作。Email:zhangjc@cugb.edu.cn。 E-mail:zhangjc@cugb.edu.cn
  • 作者简介:丁江辉(1990-),男,中国地质大学(北京)在读博士研究生,研究方向为沉积地球化学及非常规油气地质评价。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)能源学院。Email:djhdream2015@163.com
  • 基金资助:
    国家重大科技专项“页岩气分类分级资源评价方法研究”(编号:2016ZX05034-002-001)、“构造与油气资源”教育部重点实验室开放研究基金课题“基于龟裂实验的页岩成岩收缩缝形成机理及应用”(编号:TPR-2018-09)和优秀导师基金项目“页岩层内结核发育特征及其油气地质意义”(编号:2-9-2017-315)联合资助

Characteristics and controlling factors of organic matter enrichment of Lower Carboniferous black rock series deposited in inter-platform region,Southern Guizhou Depression

DING Jianghui1,2,3, ZHANG Jinchuan1,2, LI Xingqi1,2, LANG Yue1,2, ZHENG Yuyan1,2, XU Longfei1,2   

  1. 1. School of Energy and Resources, China University of Geosciences, Beijing 100083, China;
    2. Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China
  • Received:2018-10-26 Revised:2018-12-25 Online:2019-03-21 Published:2019-03-21

摘要: 黔南坳陷下石炭统台间黑色岩系中有机质较为发育,为研究其富集特征及控制因素,以黔南安顺市镇宁县本寨乡露头剖面为研究对象,开展了总有机碳含量(TOC)测试、氩离子抛光-扫面电镜分析、主微量元素分析等工作。结果表明:①黔南坳陷下石炭统大塘组黑色岩系样品的TOC质量分数为0.90%~2.83%,平均为1.45%,且TOC变化与地层旋回具有很好的相关性。② U,V和Mo等微量元素含量相对较低,氧化-还原敏感指标U/Th,V/Cr,Ni/Co及EFU-EFMo协变模式,黄铁矿粒径均超过5 μm,三大证据均反映黔南坳陷早石炭世黑色岩系沉积时期水体处于氧化-次氧化环境,这种水体的富氧状态不利于有机质的保存,但台间水体相对较浅,部分生物快速埋藏来不及被氧化或降解,也可形成有机质的富集。③ U/Th,V/Cr和Ni/Co与TOC没有明显的相关性,而古生产力指标Mo含量与TOC含量呈现明显的正相关性,表明台间黑色岩系有机质的富集主要受古生产力控制,且陆源碎屑的输入对有机质含量具有一定的稀释作用。④早石炭世研究区区域性海平面的上升带来了丰富的营养物质,使得水体中的生物更加繁盛,提高了生产力。该研究成果对于海陆过渡相煤系、中小型含煤盆地中的有机质富集规律和页岩气成藏条件研究均具有一定的参考价值。

关键词: 有机质, 氧化-还原条件, 古生产力, 大塘组, 台间区域, 黔南坳陷

Abstract: Organic matter is well developed in the Lower Carboniferous black rock series deposited in an interplatform region,Southern Guizhou Depression. In order to clarify the characteristics and controlling factors of organic matter enrichment in such a setting,a case study was carried out from a newly-cut roadside outcrop,by conducting total organic carbon (TOC) test,argon ion polishing-scanning electron microscopy (SEM) analysis, major and trace element tests. The results show that:(1) TOC contents of the investigated samples of Datang Formation in Southern Guizhou Depression range from 0.90% to 2.83%,with an average of 1.45%,displaying cyclic fluctuations being in accordance with the stratigraphic cycle. (2) Both the relatively low U,V and Mo concentrations and framboidal pyrite diameter mostly more than 5 μm,together with EFU-EFMo covariations and multiple redox-sensitive indicators such as U/Th, V/Cr and Ni/Co,indicate an oxic and/or dysoxic water environment in Southern Guizhou Depression during the Early Carboniferous period,which is usually considered unfavorable for organic matter accumulation and preservation. Because the water depth in the inter-platform region is relatively shallow,some organisms cannot be oxidized or degraded through rapid burial,further promoting organic matter enrichment. (3) There is no obvious correlation between TOC and U/Th, V/Cr and Ni/Co. Of the aspects that might affect organic matter enrichment,including redox conditions,paleoproductivity,and terrigenous clastic input,the paleoproductivity seems to be the dominant controlling factor. This is strongly supported by the positive correlation between Mo and TOC contents. Also,terrigenous clastic inputs have a certain dilution effect on the organic matter content. (4) The organic matter enrichment in Southern Guizhou Depression arose dominantly from increased organic carbon export with enhanced nutrient fluxes owning to the regional sea level rising during the Early Carboniferous period. The research results would provide guidance for the study of organic matter enrichment patterns and shale gas accumulation conditions in the marine-continental transitional coal-bearing strata and medium and small-sized coal-bearing basins.

Key words: organic matter, redox conditions, paleoproductivity, Datang Formation, inter-platform region, Southern Guizhou Depression

中图分类号: 

  • TE122.2
[1] 张金川, 徐波, 聂海宽, 等.中国页岩气资源勘探潜力.天然气工业, 2008, 28(6):136-140. ZHANG J C, XU B NIE H K, et al. Exploration potential of shale gas resources in China. Natural Gas Industry, 2008, 28(6):136-140.
[2] 邹才能, 董大忠, 王社教, 等.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 2010, 37(6):641-653. ZOU C N, DONG D Z, WANG S J, et al. Geological characteristics,formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 2010, 37(6):641-653.
[3] 董大忠, 邹才能, 杨桦, 等.中国页岩气勘探开发进展与发展前景.石油学报, 2012, 33(增刊1):107-114. DONG D Z, ZOU C N, YANG H, et al. Progress and prospects of shale gas exploration and development in China. Acta Petrolei Sinica, 2012, 33(Suppl 1):107-114.
[4] 金之钧, 胡宗全, 高波, 等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 2016, 23(1):1-10. JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin. Earth Science Frontiers, 2016, 23(1):1-10.
[5] 张金川, 霍志鹏, 唐玄, 等.中国页岩气地质.上海:华东理工大学出版社, 2016:26-27. ZHANG J C, HUO Z P, TANG X, et al. Shale gas geology in China. Shanghai:East China University of Science and Technology Press,2016:26-27.
[6] 孟凡洋, 陈科, 包书景, 等.湘西北复杂构造区下寒武统页岩含气性及主控因素分析:以慈页1井为例.岩性油气藏, 2018, 30(5):29-39. MENG F Y, CHEN K, BAO S J, et al. Gas-bearing property and main controlling factors of Lower Cambrian shale in complex tectonic area of northwestern Hunan province:a case of well Ciye 1. Lithologic Reservoirs, 2018, 30(5):29-39.
[7] TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia:an overview. Arctic & Alpine Research, 1991, 58(1):1-24.
[8] PEDERSEN T F,CALVERT S E. Anoxia vs. productivity:What controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bulletin, 1990, 74:454-466.
[9] SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales:the relative roles of production,decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 2003, 195(1):229-273.
[10] GALLEGO-TORRES D, MARTINEZ-RUIZ F, PAYTAN A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean:Role of anoxia vs. productivity at time of sapropel deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2):424-439.
[11] ARTHUR M A, SAGEMAN B B. Marine black shales:depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 1994, 22:499-551.
[12] MORT H, JACQUAT O, ADATTE T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain:Enhanced productivity and/or better preservation? Cretaceous Research, 2007, 28(4):597-612.
[13] 苏慧敏, 杨瑞东, 程伟, 等.贵州西南部下石炭统打屋坝组页岩气成藏特征与有利区分析.贵州大学学报(自然版), 2017, 34(3):41-46. SU H M, YANG R D, CHENG W, et al. Shale gas accumulation characteristics and advantageous area analysis of Lower Carboniferous Dawuba Formation in southwestern Guizhou. Journal of Guizhou University(Natural Sciences), 2017, 34(3):41-46.
[14] 梅冥相, 马永生, 邓军, 等.滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比. 中国地质, 2005, 32(1):13-24. MEI M X, MA Y S, DENG J, et al. Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi basin and its adjacent areas and global correlation of third-order sea-level change. Geology in China, 2005, 32(1):13-24.
[15] CHEN D, TUCKER M E. The Frasnian-Famennian mass extinction:Insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 2003, 193(1):87-111.
[16] 闫建平, 言语, 彭军, 等.天文地层学与旋回地层学的关系、研究进展及其意义.岩性油气藏, 2017, 29(1):147-156. YAN J P, YAN Y, PENG J, et al. The research progress, significance and relationship of astrostratigraphy with cyclostratigraphy. Lithologic Reservoirs, 2017, 29(1):147-156.
[17] PI D H, LIU C Q, SHIELDS-ZHOU G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China:Constraints for redox environments and origin of metal enrichments. Precambrian Research, 2013, 225(1):218-229.
[18] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:an update. Chemical Geology, 2006, 232(1/2):12-32.
[19] WEDEPOHL K H. Environmental influences on the chemical composition of shales and clays. Physics & Chemistry of the Earth, 1971, 8(71):305-333.
[20] TAYLOR S R, MCLENNAN S M. The continental crust:Its composition and evolution. London:Blackwell Scientific Publications, 1985:312.
[21] CAO J, YANG R, YIN W, et al. Mechanism of organic matter accumulation in residual bay environments:the Early Cretaceous Qiangtang Basin,Tibet. Energy & Fuels, 2018, 32(2):1024-1037.
[22] SPEARS D A, ZHENG Y. Geochemistry and origin of elements in some UK coals. International Journal of Coal Geology, 1999, 38(3-4):161-179.
[23] FU X G, WANG J, ZENG Y H, et al. Geochemistry and origin of rare earth elements(REEs)in the Shengli River oil shale, northern Tibet, China. Chemie der Erde-Geochemistry, 2011, 71(1):21-30.
[24] WANG Z, FU X, FENG X, et al. Geochemical features of the black shales from the Wuyu Basin, Southern Tibet:Implications for palaeoenvironment and palaeoclimate. Geological Journal, 2017, 52(2):282-297.
[25] LYONS T W, WERNE J P, HOLLANDER D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology, 2003, 195(1/4):131-157.
[26] ROSS D J K, BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata:Examples from the DevonianMississippian shales,Western Canadian Sedimentary Basin. Chemical Geology, 2009, 260(1/2):1-19.
[27] MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 1999, 63:1735-1750.
[28] CALVERT S E, PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record. Marine Geology, 1993, 113(1/2):67-88.
[29] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark shale member of the Dennis limestone, Wabaunsee county, Kansas, U. S. A. Chemical Geology, 1992, 99(1/3):65-82.
[30] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 1994, 111(111):111-129.
[31] 李兴, 张立强, 施辉, 等.准噶尔盆地玛湖凹陷百口泉组沉积古环境分析:以玛18井为例.岩性油气藏, 2016, 28(2):80-85. LI X, ZHANG L Q, SHI H, et al. Sedimentary environment of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin:a case study from Ma 18 well. Lithologic Reservoirs, 2016, 28(2):80-85.
[32] 黄成刚, 常海燕, 崔俊, 等.柴达木盆地西部地区渐新世沉积特征与油气成藏模式.石油学报, 2017, 38(11):1230-1243. HUANG C G, CHANG H Y, CUI J, et al. Sedimentary characteristics and hydrocarbon accumulation model of Oligocene reservoirs in the western Qaidam Basin. Acta Petrolei Sinica, 2017, 38(11):1230-1243.
[33] 韦恒叶.古海洋生产力与氧化-还原指标:元素地球化学综述. 沉积与特提斯地质, 2012, 32(2):76-88. WEI H Y. Productivity and redox proxies of palaeo-oceans:an overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology, 2012, 32(2):76-88.
[34] ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 2009, 268(3-4):211-225.
[35] 徐祖新, 韩淑敏, 王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏, 2015, 27(2):31-37. XU Z X, HAN S M, WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in Middle Yangtze area. Lithologic Reservoirs, 2015, 27(2):31-37.
[36] WILKIN R T, BARNES H L. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339.
[37] WEI H, CHEN D, WANG J, et al. Organic accumulation in the lower Chihsia Formation(Middle Permian)of South China:Constraints from pyrite morphology and multiple geochemical proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 353-355(3):73-86.
[38] 杨瑞东, 颜承锡, 汪成元, 等. 贵州石炭纪遗迹化石:兼论Zoophycos在地史时期的古地理分布. 贵州地质, 1995, 12(4):290-297. YANG R D, YAN C X, WANG C Y, et al. The Carboniferous trace fossils in Guizhou:Discussion on distribution of Zoophycos throughout geological history. Guizhou Geology, 1995, 12(4):290-297.
[39] DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment:a geochemical proxy for paleoproductivity. Paleoceanography, 1992, 7(2):163-181.
[40] FRANCOIS R, HONJO S, MANGANINI S J, et al. Biogenic barium fluxes to the deep sea:Implications for paleoproductivity reconstruction. Global Biogeochemical Cycles, 1995, 9(2):289-303.
[41] YAN D, WANG H, FU Q, et al. Geochemical characteristics in the Longmaxi Formation(Early Silurian)of South China:Implications for organic matter accumulation. Marine and Petroleum Geology, 2015, 65:290-301.
[42] ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments:implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 2006, 21(1):PA1016.
[1] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[2] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[3] 王朋飞, 姜振学, 杨彩虹, 金璨, 吕鹏, 王海华. 重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J]. 岩性油气藏, 2019, 31(3): 27-36.
[4] 郑珊珊, 刘洛夫, 汪洋, 罗泽华, 王曦蒙, 盛悦, 许同, 王柏寒. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019, 31(3): 55-65.
[5] 李森, 朱如凯, 崔景伟, 柳涵. 古环境与有机质富集控制因素研究——以鄂尔多斯盆地南缘长7油层组为例[J]. 岩性油气藏, 2019, 31(1): 87-95.
[6] 曹涛涛, 邓模, 刘虎, 宋之光, 曹清古, 黄俨然. 可溶有机质对泥页岩储集物性的影响[J]. 岩性油气藏, 2018, 30(3): 43-51.
[7] 郭秋麟, 武娜, 任洪佳, 陈宁生, 谌卓恒. 中低成熟阶段页岩有机质孔预测模型探讨[J]. 岩性油气藏, 2017, 29(6): 1-7.
[8] 程俊, 徐晓飞, 张文峰, 米玛旺久, 郭俊. 上扬子西北缘宁强湾牛蹄塘组有机地球化学特征[J]. 岩性油气藏, 2017, 29(1): 21-26.
[9] 周 文,徐 浩,邓虎成,陈文玲. 四川盆地陆相富有机质层段剖面结构特征及类型划分[J]. 岩性油气藏, 2016, 28(6): 1-8.
[10] 胡 曦,王兴志,李宜真,等. 利用测井信息计算页岩有机质丰度 ——以川南长宁地区龙马溪组为例[J]. 岩性油气藏, 2016, 28(5): 107-112.
[11] 付德亮,周世新,马 瑜,李 靖,李源遽. 煤系有机质演化过程中 CO 2 对流体密度的影响[J]. 岩性油气藏, 2016, 28(2): 41-46.
[12] 熊 健,罗丹序,刘向君,梁利喜. 鄂尔多斯盆地延长组页岩孔隙结构特征及其控制因素[J]. 岩性油气藏, 2016, 28(2): 16-23.
[13] 刘小平,刘庆新,刘 杰,董清源,关 铭,李洪香. 黄骅坳陷沧东凹陷孔二段富有机质泥页岩地球化学特征[J]. 岩性油气藏, 2015, 27(6): 15-22.
[14] 杨 燕,雷天柱,关宝文,田春桃,吴应琴. 滨浅湖相泥质烃源岩中不同赋存状态可溶有机质差异性研究[J]. 岩性油气藏, 2015, 27(2): 77-82.
[15] 曲彦胜,钟宁宁,刘岩,李园园,彭波. 烃源岩有机质丰度的测井计算方法及影响因素探讨[J]. 岩性油气藏, 2011, 23(2): 80-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .