岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 46–53.doi: 10.12108/yxyqc.20200505

• 油气地质 • 上一篇    下一篇

渝东南地区海相页岩有机质孔隙发育特征及演化

王朋飞1,2, 金璨3, 臧小鹏1, 田黔宁1, 刘国1, 崔文娟1   

  1. 1. 中国地质调查局 地学文献中心, 北京 100083;
    2. 中国石油大学 油气资源与探测国家重点实验室, 北京 102249;
    3. 中国石化上海海洋油气分公司, 上海 200120
  • 收稿日期:2019-09-25 修回日期:2019-11-28 出版日期:2020-10-01 发布日期:2020-08-08
  • 作者简介:王朋飞(1988-),男,博士,助理研究员,主要从事非常规油气成藏与地质评价及能源信息方面的研究工作。地址:(100083)北京市海淀区学院路29号。Email:wangpengfeicgs@163.com。
  • 基金资助:
    中国地质调查局项目“国际地质调查动态跟踪与分析”(编号:DD20190414)和“南方页岩气基础地质调查工程项目”(编号:12120114046701)联合资助

Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing

WANG Pengfei1,2, JIN Can3, ZANG Xiaopeng1, TIAN Qianning1, LIU Guo1, CUI Wenjuan1   

  1. 1. Geoscience Documentation Center, China Geological Survey, Beijing 100083, China;
    2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Sinopec Shanghai Offshore Petroleum Company, Shanghai 200120, China
  • Received:2019-09-25 Revised:2019-11-28 Online:2020-10-01 Published:2020-08-08

摘要: 页岩气在储层内的有效赋存及渗流由有机质孔隙决定。由此,以渝东南地区下志留统龙马溪组和下寒武统牛蹄塘组高—过成熟度典型富有机质黑色海相页岩为研究对象,使用电子显微镜观察2套页岩层位的有机质孔隙结构。结果表明:龙马溪组页岩有机质孔隙主要发育在焦沥青内部,而固体干酪根内仅发育少量直径较小的有机质孔隙;牛蹄塘组页岩的焦沥青和固体干酪根均不发育有机质孔隙;2套页岩的总有机碳含量、全岩矿物组成及干酪根类型均具有相似特征,但牛蹄塘组页岩的热成熟度要远高于龙马溪组页岩,且已达到变质期,其固体干酪根和焦沥青的物理化学性质均趋近于石墨,导致其有机质内部不发育孔隙。过高的热成熟度不利于页岩中有机质孔隙的保存,所以渝东南地区下寒武统牛蹄塘组高—过成熟度海相页岩气的勘探开发应重点寻找热成熟度低于3.5%的地区。

关键词: 海相页岩, 有机质孔隙, 牛蹄塘组, 龙马溪组, 渝东南地区

Abstract: Organic matter pores determine the occurrence and effective flow of hydrocarbon gas in shale reservoir. The organic matter pore structures of typical organic-rich black marine shale with high-over maturity of Lower Silurian Longmaxi Formation and Lower Cambrian Niutitang Formation in southeastern Chongqing were observed by electron microscope. The results show that there were a large number of organic matter pores in pyrobitumen of Longmaxi shale, with large diameter and strong connectivity, and solid kerogen had a little organic matter pores,while no organic matter pore was developed in pyrobitumen and solid kerogen of Niutitang shale. The two sets of shale have similar characteristics in total organic carbon content,whole rock mineral composition and kerogen type,but the thermal maturity of Niutitang shale is much higher than that of Longmaxi shale, and it has reached the metamorphism stage. The physical and chemical properties of solid kerogen and pyrobitumen tend to be similar to that of graphite, resulting in no pores developed in the organic matter. High thermal maturity is not conducive to the preservation of organic pores in shale, so the exploration and development of highover maturity marine shale gas of Lower Cambrian Niutitang Formation in southeastern Chongqing should focus on the area with thermal maturity less than 3.5%.

Key words: marine shale, organic matter pore, Niutitang Formation, Longmaxi Formation, southeastern Chongqing

中图分类号: 

  • TE122.2
[1] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system,Marcellus Formation(Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200.
[2] 张廷山, 何映颉, 杨洋, 等.有机质纳米孔隙吸附页岩气的分子模拟.天然气地球科学, 2017, 28(1):146-155. ZHANG T S, HE Y J, YANG Y, et al. Characteristics and mechanisms of the micro-holes in the Early Palaeozoic marine shale, southern Sichuan Basin. Acta Geologica Sinica, 2017, 28(1):146-155.
[3] JIAO K, YAO S P, LIU C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing:an example from the Lower Silurian Longmaxi shale, upper Yangtze region, China. International Journal of Coal Geology, 2014, 128:1-11.
[4] JI W M, SONG Y, RUI Z H, et al. Pore characterization of isolated organic matter from high matured gas shale reservoir. International Journal of Coal Geology, 2017, 174:31-40.
[5] WANG P F, JIANG Z X, JI W M, et al. Heterogeneity of intergranular,intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China:Evidence from SEM digital images and fractal and multifractal geometries. Marine and Petroleum Geology, 2016, 72:122-138.
[6] MA Y, ZHONG N N, LI D H, et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China:a possible microscopic mechanism for gas preservation. International Journal of Coal Geology, 2015, 137:38-54.
[7] 王香增, 张丽霞, 雷裕红, 等.低熟湖相页岩内运移固体有机质和有机质孔特征:以鄂尔多斯盆地东南部延长组长7油层组页岩为例.石油学报, 2018, 39(2):141-151. WANG X Z, ZHANG L X, LEI Y H, et al. Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:a case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation, southeastern Ordos Basin. Acta Petrolei Sinica, 2018, 39(2):141-151.
[8] 王玉满, 李新景, 陈波, 等.海相页岩有机质炭化的热成熟度下限及勘探风险.石油勘探与开发, 2018, 45(3):385-395. WANG Y M, LI X J, CHEN B, et al. Lower limit of thermal maturity for the carbonification of organic matters in marine shales and its exploration risk. Petroleum Exploration and Development, 2018, 45(3):385-395.
[9] 刘忠宝, 冯动军, 高波, 等.上扬子地区下寒武统高演化页岩微观孔隙特征.天然气地球科学, 2017, 28(7):1096-1107. LIU Z B, FENG D J, GAO B, et al. Micropore characteristics of high thermal evolution shale in the Lower Cambrian series in Upper Yangtze area. Natural Gas Geoscience, 2017, 28(7):1096-1107.
[10] 郭旭升, 胡东风, 魏志红, 等.涪陵页岩气田的发现与勘探认识.中国石油勘探, 2016, 21(3):24-37. GUO X S, HU D F, WEI Z H, et al. Discovery and exploration of Fuling shale gas field. China Petroleum Exploration, 2016, 21(3):24-37.
[11] 赵建华, 金之钧, 金振奎, 等.岩石学方法区分页岩中有机质类型.石油实验地质, 2016, 38(4):514-520. ZHAO J H, JIN Z J, JIN Z K, et al. Petrographic methods to distinguish organic matter type in shale. Petroleum Geology & Experiment, 2016, 38(4):514-520.
[12] LOUCKS R G, REED R M. Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks. Gulf Coast Association of Geological Societies Journal, 2014, 3:51-60.
[13] 陈相霖, 郭天旭, 石砥石, 等.陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力.岩性油气藏, 2019, 31(5):52-60. CHEN X L, GUO T X, SHI D S, et al. Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi. Lithologic Reservoirs, 2019, 31(5):52-60.
[14] 拜文华, 王强, 孙莎莎, 等.五峰组-龙马溪组页岩地化特征及沉积环境:以四川盆地西南缘为例. 中国矿业大学学报, 2019, 48(6):1276-1289. BAI W H, WANG Q, SUN S S, et al. Geochemical characteristics and sedimentary environment of the Wufeng-Longmaxi shales:a case study from southwestern margin of the Sichuan Basin. Journal of China University of Mining & Technology, 2019, 48(6):1276-1289.
[15] 丁江辉, 张金川, 杨超, 等.页岩有机孔成因演化及影响因素探讨.西南石油大学学报(自然科学版), 2019, 41(2):33-44. DING J H, ZHANG J C, YANG C, et al. Formation evolution and influencing factors of organic pores in shale. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(2):33-44.
[16] 张焱林, 段轲, 刘早学, 等.鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素.石油实验地质, 2019, 41(5):691-698. ZHANG Y L, DUAN K, LIU Z X, et al. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei. Petroleum Geology & Experiment, 2019, 41(5):691-698.
[17] 张建坤, 何生, 颜新林, 等.页岩纳米级孔隙结构特征及热成熟演化.中国石油大学学报(自然科学版), 2017, 41(1):11-24. ZHANG J K, HE S, YAN X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(1):11-24.
[18] 王朋飞, 姜振学, 杨彩虹, 等.重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征.岩性油气藏, 2019, 31(3):27-36. WANG P F, JIANG Z X, YANG C H, et al. Organic pore development characteristics of Longmaxi and Niutitang shales in the periphery of Chongqing. Lithologic Reservoirs, 2019, 31(3):27-36.
[19] 王朋飞, 姜振学, 韩波, 等.中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数.石油学报, 2018, 39(2):152-162. WANG P F, JIANG Z X, HAN B, et al. Reservoir geological parameters for efficient exploration and development of Lower Cambrian Niutitang Formation shale gas in South China. Acta Petrolei Sinica, 2018, 39(2):152-162.
[20] 马勇, 钟宁宁, 程礼军, 等.渝东南两套富有机质页岩的孔隙结构特征:来自FIB-SEM的新启示. 石油实验地质, 2015, 37(1):109-116. MA Y, ZHONG N N, CHENG L J, et al. Pore structure of two organic-rich shales in southeastern Chongqing area:Insight from focused ion beam scanning electron microscope(FIB-SEM). Petroleum Geology & Experiment, 2015, 37(1):109-116.
[21] 王朋飞, 吕鹏, 姜振学, 等.中国海陆相页岩有机质孔隙发育特征对比:基于聚焦离子束氦离子显微镜(FIB-HIM)技术. 石油实验地质, 2018, 40(5):739-748. WANG P F, LYU P, JIANG Z X, et al. Comparison of organic matter pores of marine and continental facies shale in China:based on focused ion beam helium ion microscopy(FIB-HIM). Petroleum Geology & Experiment, 2018, 40(5):739-748.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[3] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
[4] 叶亚培, 唐书恒, 郗兆栋, 张耀选. 黔北地区牛蹄塘组页岩矿物组成特征与脆性评价[J]. 岩性油气藏, 2019, 31(4): 62-71.
[5] 高乔, 王兴志, 朱逸青, 赵圣贤, 张芮, 肖哲宇. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J]. 岩性油气藏, 2019, 31(4): 72-84.
[6] 李贤胜, 刘向君, 熊健, 李玮, 梁利喜. 层理对页岩纵波特性的影响[J]. 岩性油气藏, 2019, 31(3): 152-160.
[7] 王朋飞, 姜振学, 杨彩虹, 金璨, 吕鹏, 王海华. 重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J]. 岩性油气藏, 2019, 31(3): 27-36.
[8] 郑珊珊, 刘洛夫, 汪洋, 罗泽华, 王曦蒙, 盛悦, 许同, 王柏寒. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏, 2019, 31(3): 55-65.
[9] 何贵松, 何希鹏, 高玉巧, 张培先, 万静雅, 黄小贞. 中国南方3套海相页岩气成藏条件分析[J]. 岩性油气藏, 2019, 31(1): 57-68.
[10] 余川, 周洵, 方光建, 汪生秀, 余忠樯. 地层温压条件下页岩吸附性能变化特征——以渝东北地区龙马溪组为例[J]. 岩性油气藏, 2018, 30(6): 10-17.
[11] 沈瑞, 胡志明, 郭和坤, 姜柏材, 苗盛, 李武广. 四川盆地长宁龙马溪组页岩赋存空间及含气规律[J]. 岩性油气藏, 2018, 30(5): 11-17.
[12] 曹涛涛, 邓模, 刘虎, 宋之光, 曹清古, 黄俨然. 可溶有机质对泥页岩储集物性的影响[J]. 岩性油气藏, 2018, 30(3): 43-51.
[13] 朱汉卿, 贾爱林, 位云生, 贾成业, 金亦秋, 袁贺. 基于氩气吸附的页岩纳米级孔隙结构特征[J]. 岩性油气藏, 2018, 30(2): 77-84.
[14] 陈居凯, 朱炎铭, 崔兆帮, 张闯辉. 川南龙马溪组页岩孔隙结构综合表征及其分形特征[J]. 岩性油气藏, 2018, 30(1): 55-62.
[15] 胡博文, 李斌, 鲁东升, 罗群, 李建新, 王一霖. 页岩气储层特征及含气性主控因素——以湘西北保靖地区龙马溪组为例[J]. 岩性油气藏, 2017, 29(3): 83-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .