岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 29–38.doi: 10.12108/yxyqc.20220303

• 地质勘探 • 上一篇    下一篇

渤海深层变质岩潜山油藏裂缝主控因素及预测

郑华, 康凯, 刘卫林, 龚敏, 陈善斌   

  1. 中海石油 (中国) 有限公司天津分公司, 天津 300459
  • 收稿日期:2021-08-12 修回日期:2021-12-03 出版日期:2022-05-01 发布日期:2022-05-12
  • 作者简介:郑华(1986-),男,硕士,高级工程师,主要从事海上石油天然气地质综合研究工作。地址:(300459)天津市滨海新区海川路2121号。Email:zhenghua@cnooc.com.cn。
  • 基金资助:
    中海石油(中国)有限公司重大专项“渤海中深层复杂油气藏高效开发技术”(编号:CNOOC-KJ135ZDXM36TJ03TJ)资助

Main controlling factors and prediction of fractures in deep metamorphic buried hill reservoirs in Bohai Sea

ZHENG Hua, KANG Kai, LIU Weilin, GONG Min, CHEN Shanbin   

  1. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China
  • Received:2021-08-12 Revised:2021-12-03 Online:2022-05-01 Published:2022-05-12

摘要: 渤中13-2大型潜山地区是渤海海域发现的首个亿吨级深层变质岩潜山油藏。通过已钻井的岩心、薄片、测试、测井等资料,从构造演化、成岩作用、古地貌特征等方面,阐述了研究区潜山储集空间类型、裂缝发育主控因素及分布规律,为研究区的高效开发奠定基础。研究结果表明:①多期次构造运动是导致裂缝形成的主控因素,风化淋滤和裂缝充填是造成储层纵向差异的主要原因。②利用结构张量场与绕射波耦合属性可以有效指导研究区储层平面预测,根据最大似然属性体能够较好地预测潜山裂缝走向。③平面上靠近大断层附近裂缝发育较好,纵向上风化带裂缝好于内幕带裂缝,渤中13-2地区主力层段风化带储层可划分为4类,Ⅰ类储层最好,主要位于构造高部位;Ⅱ类储层次之,主要位于构造腰部; Ⅲ类储层较差,主要位于距离断层较近区域的构造翼部; Ⅳ类储层最差,主要位于距离大断层较远处。

关键词: 风化淋滤作用, 结构张量场, 绕射波, 深层, 裂缝, 变质岩潜山, 渤中13-2地区, 渤海海域

Abstract: Bozhong 13-2 area is the first deep metamorphic buried hill reservoir with 100 million-ton reserves discovered in Bohai Sea. Based on the data of drilled cores,thin sections, test and logging, the buried hill reservoir space,main controlling factors and distribution of fractures in the study area were expounded from the aspects of structural evolution,diagenesis and paleogeomorphic characteristics,which lays a foundation for the efficient development of the study area. The results show that: (1)Multi-stage tectonic movements are the main controlling factors of fracture formation,weathering, leaching and fracture filling are the main reasons for the vertical difference of reservoirs.(2)The coupling properties of structure tensor field and diffraction wave can effectively guide the prediction of reservoir on the plane in the study area, and the maximum likelihood attributes can be used to effectively predict the fracture trend in buried hills.(3)The fractures are well developed near the large faults on the plane, and the fractures developed in the weathered zone are better than those in the inner zone in the vertical direction. The reservoirs in the weathered zone of Bozhong 13-2 area can be divided into four types. The type Ⅰ reservoirs are the best and mainly located in the high parts of the structure,type Ⅱ reservoirs are mainly located at the waist of the structure,type Ⅲ reservoirs are mainly located in the structural wings near the faults, and type Ⅳreservoirs are the poorest and mainly located far away from the large faults.

Key words: weathering and leaching, structural tensor field, diffraction wave, deep layer, fracture, metamorphic buried hill, Bozhong 13-2 area, Bohai Sea

中图分类号: 

  • TE122.2
[1] 薛永安.渤海海域深层天然气勘探的突破与启示[J].天然气工业, 2019, 39(1):11-20. XUE Yong'an. The breakthrough of the deep-buried gas exploration in the Bohai Sea area and its enlightenment[J]. Natural Gas Industry, 2019, 39(1):11-20.
[2] 薛永安,李慧勇.渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J].中国海上油气, 2018, 30(3):1-9. XUE Yong'an, LI Huiyong. Large condensate gas field in deep Archean metamorphic buried hill in Bohai Sea:Discovery and geological significance[J]. China Offshore Oil and Gas, 2018, 30(3):1-9.
[3] 邓运华,彭文绪.渤海锦州25-1S混合花岗岩潜山大油气田的发现[J].中国海上油气, 2009, 21(3):145-150. DENG Yunhua, PENG Wenxu. Discovering large buried-hill oil and gas fields of migmatitic granite on Jinzhou 25-1S in Bohai Sea[J]. China Offshore Oil and Gas, 2009, 21(3):145-150.
[4] 李娟,孙松领,陈广坡,等.海拉尔盆地浅变质岩潜山岩性控储特征及储层岩性序列识别[J].岩性油气藏, 2018, 30(4):26-36. LI Juan, SUN Songling, CHEN Guangpo, et al. Controlling of epimetamorphic rock lithology on basement reservoir and identification of lithological sequence of reservoir in Hailar Basin[J]. Lithologic Reservoirs, 2018, 30(4):26-36.
[5] 朱博远,张超谟,张占松,等.渤中19-6太古界潜山复杂岩性储层矿物组分反演[J].岩性油气藏, 2020, 32(4):107-114. ZHU Boyuan, ZHANG Chaomo, ZHANG Zhansong, et al. Mineral component inversion of complex lithologic reservoirs in Bozhong 19-6 Archean buried hill[J]. Lithologic Reservoirs, 2020, 32(4):107-114.
[6] 徐长贵,于海波,王军,等.渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J].石油勘探与开发, 2019, 46(1):25-38. XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1):25-38.
[7] 徐长贵,杜晓峰,刘晓健,等.渤海海域太古界深埋变质岩潜山优质储集层形成机制与油气勘探意义[J].石油与天然气地质, 2020, 41(2):235-247. XU Changgui, DU Xiaofeng, LIU Xiaojian, et al. Formation mechanism of high-quality deep buried-hill reservoir of Archaean metamorphic rocks and its significance in petroleum exploration in Bohai Sea area[J]. Oil&Gas Geology, 2020, 41(2):235-247.
[8] 童凯军,赵春明,吕坐彬,等.渤海变质岩潜山油藏储集层综合评价与裂缝表征[J].石油勘探与开发, 2012, 39(1):56-63. TONG Kaijun, ZHAO Chunming, LYU Zuobin, et al. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay[J]. Petroleum Exploration and Development, 2012, 39(1):56-63.
[9] 孙夕平,张昕,李璇,等.基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J].岩性油气藏, 2021, 33(1):220-228. SUN Xiping, ZHANG Xin, LI Xuan, et al. Reservoir prediction for weathering and leaching zone of bedrock buried hill based on seismic pre-stack depth migration[J]. Lithologic Reservoirs, 2021, 33(1):220-228.
[10] 侯明才,曹海洋,李慧勇,等.渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J].天然气工业, 2019, 39(1):33-44. HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1):33-44.
[11] 周心怀,项华,于水,等.渤海锦州南变质岩潜山油藏储集层特征与发育控制因素[J].石油勘探与开发, 2005, 32(6):17-20. ZHOU Xinhuai, XIANG Hua, YU Shui, et al. Reservoir characteristics and development controlling factors of JZS Neo-Archean metamorphic buried hill oil pool in Bohai Sea[J]. Petroleum Exploration and Development, 2005, 32(6):17-20.
[12] 张晶,李双文,付立新,等.黄骅坳陷孔南地区碎屑岩潜山内幕储层特征及控制因素[J].岩性油气藏, 2014, 26(6):50-56. ZHANG Jing, LI Shuangwen, FU Lixin, et al. Characteristics of inner buried hill clastic reservoirs and their main controlling factors in Kongnan area, Huanghua Depression[J]. Lithologic Reservoirs, 2014, 26(6):50-56.
[13] 贾海松.BZ气田变质岩潜山储层特征研究[J].石油地质与工程, 2019, 33(5):1-4. JIA Haisong. Reservoir characteristics of metamorphic buried hill in BZ gas field[J]. Petroleum Geology and Engineering, 2019, 33(5):1-4.
[14] 肖大坤,范廷恩,范洪军,等.变质岩潜山双重介质油藏储层建模及质控方法:以渤海湾A油田为例[J].中国海上油气, 2020, 32(6):85-92. XIAO Dakun, FAN Ting'en, FAN Hongjun, et al. Geological modeling and quality control methods of metamorphic buried hill dual medium reservoir:A case study of oilfield A, Bohai Bay[J]. China Offshore Oil and Gas, 2020, 32(6):85-92.
[15] 于福生,漆家福,王春英.华北东部印支期构造变形研究[J].中国矿业大学学报, 2002, 31(4):402-406. YU Fusheng, QI Jiafu, WANG Chunying.Tectonic deformation of Indosinian period in eastern part of North China[J]. Journal of China University of Mining&Technology, 2002, 31(4):402-406.
[16] 赵越,徐刚,张拴宏,等.燕山运动与东亚构造体制的转变[J].地学前缘, 2004, 11(3):319-328. ZHAO Yue, XU Gang, ZHANG Shuanhong, et al. Yanshanian movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 2004, 11(3):319-328.
[17] 周立宏,李三忠,刘建忠,等.渤海湾盆地区燕山期构造特征与原型盆地[J].地球物理学进展, 2003, 18(4):692-699. ZHOU Lihong, LI Sanzhong, LIU Jianzhong, et al. The Yanshanian structural style and basin prototypes of the Mesozoic Bohai Bay Basin[J]. Progress in Geophysics, 2003, 18(4):692-699.
[18] 薛永安,王德英.渤海湾油型湖盆大型天然气藏形成条件与勘探方向[J].石油勘探与开发, 2020, 40(2):260-271. XUE Yong'an, WANG Deying. Formation conditions and exploration direction of large natural gas reservoirs in the oil-prone Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 40(2):260-271.
[19] 李洪革,杜旭东,陆克政,等.渤海湾地区中西部中生代构造特征及演化[J].石油大学学报(自然科学版), 1999, 23(3):1-5. LI Hongge, DU Xudong, LU Kezheng, et al. Evolution and structural characteristics of the Mesozoic era in the central-west part of Bohai Bay area[J]. Journal of the University of Petroleum, China (Edition of Natural Sciences), 1999, 23(3):1-5.
[20] 李三忠,索艳慧,戴黎明,等.渤海湾盆地形成与华北克拉通破坏[J].地学前缘, 2010, 17(4):64-89. LI Sanzhong, SUO Yanhui, DAI Liming, et al. Development of the Bohai Bay Basin and destruction of the North China craton[J]. Earth Science Frontiers, 2010, 17(4):64-89.
[21] 侯贵廷,钱祥麟,蔡东升.渤海湾盆地中、新生代构造演化研究[J].北京大学学报(自然科学版), 2001, 37(6):845-851. HOU Guiting, QIANG Xianglin, CAI Dongsheng. The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(6):845-851.
[22] 苏中堂.鄂尔多斯盆地塔巴庙地区奥陶系马家沟组沉积相与古岩溶储层特征[D].成都:成都理工大学, 2008. SU Zhongtang. Sedimentary facies and character of paleokarst reservoir in Majiagou Formation in Ordovician, Tabamiao area, Ordos Basin[D]. Chengdu:Chengdu University of Technology, 2008.
[23] 闫海军,何东博,许文壮,等.古地貌恢复及对流体分布的控制作用:以鄂尔多斯盆地高桥区气藏评价阶段为例[J].石油学报, 2016, 37(12):1483-1494. YAN Haijun, HE Dongbo, XU Wenzhuang, et al. Paleotopography restoration method and its controlling effect on fluid distribution:A case study of the gas reservoir evaluation stage in Gaoqiao, Ordos Basin[J]. Acta Petrolei Sinica, 2016, 37(12):1483-1494.
[24] 韩敏强.鄂尔多斯盆地延长探区奥陶纪末古地貌与马五段储层预测[D].西安:西北大学, 2010. HAN Minqiang. The palaeogeomorphic recovery of Late Ordovician and section of O lm5 reservoir prediction in Yanchang exploration area of Ordos Basin[D]. Xi'an:Northwest University, 2010.
[25] 袁静.埕北30潜山带太古界储层特征及其影响因素[J].石油学报, 2004, 25(1):48-51. YUAN Jing. Characters and influence factors on Archeozoic reservoir in the Chengbei 30 buried hills[J]. Acta Petrolei Sinica, 2004, 25(1):48-51.
[26] 葛志丹,王兴志,朱萌,等.东营凹陷太古界岩浆岩储层特征研究[J].岩性油气藏, 2011, 23(4):48-52. GE Zhidan, WANG Xingzhi, ZHU Meng, et al. Reservoir characteristics of Archean magmatic rocks in Dongying Sag[J]. Lithologic Reservoirs, 2011, 23(4):48-52.
[27] 张攀,胡明,何冰,等.东营凹陷太古界基岩储层主控因素分析[J].断块油气田, 2011, 18(1):18-21. ZHANG Pan, HU Ming, HE Bing, et al. Analysis on main controlling factors of Archaeozoic base rock reservoir in Dongying Depression[J]. Fault-Block Oil&Gas Field, 2011, 18(1):18-21.
[1] 李璐萍, 梁金同, 刘四兵, 郭艳波, 李堃宇, 和源, 金九翔. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48.
[2] 汪林波, 韩登林, 王晨晨, 袁瑞, 林伟, 张娟. 库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J]. 岩性油气藏, 2022, 34(3): 49-59.
[3] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[4] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[5] 钟会影, 沈文霞, 藏秋缘, 许严芮. 基于PEBI网格的考虑诱导裂缝的聚合物驱压力动态研究[J]. 岩性油气藏, 2022, 34(3): 164-170.
[6] 牛成民, 杜晓峰, 王启明, 张参, 丁熠然. 渤海海域新生界大型岩性油气藏形成条件及勘探方向[J]. 岩性油气藏, 2022, 34(3): 1-14.
[7] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[8] 李娟, 郑茜, 孙松领, 张斌, 陈广坡, 何巍巍, 韩乾凤. 应用测井储层因子预测变质碎屑岩裂缝-孔隙型储层——以海拉尔盆地贝尔凹陷基岩为例[J]. 岩性油气藏, 2021, 33(6): 165-176.
[9] 叶涛, 牛成民, 王清斌, 高坤顺, 孙哲, 陈安清. 用“成分-结构”分类法识别古潜山变质岩岩性——以渤海海域太古界为例[J]. 岩性油气藏, 2021, 33(6): 156-164.
[10] 孙夕平, 张昕, 李璇, 韩永科, 王春明, 魏军, 胡英, 徐光成, 张明, 戴晓峰. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏, 2021, 33(1): 220-228.
[11] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[12] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[13] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[14] 陈更新, 王建功, 杜斌山, 刘应如, 李艳丽, 杨会洁, 李志明, 俞晓峰. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[15] 曹旭升, 韩昀, 张继卓, 罗志伟. 渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例[J]. 岩性油气藏, 2020, 32(4): 155-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!