岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 107–118.doi: 10.12108/yxyqc.20250610

• 地质勘探 • 上一篇    

塔里木盆地顺北地区走滑断裂特征及控藏作用

黄诚1, 朱莲花1, 卜旭强1, 曾溅辉2,3, 隆辉2,3, 廖文毫2,3, 刘亚洲2,3, 乔俊程2,3   

  1. 1. 中国石化西北油田分公司 勘探开发研究院, 乌鲁木齐 830011;
    2. 中国石油大学(北京)地球科学学院, 北京 102249;
    3. 中国石油大学(北京)油气资源与工程全国重点实验室, 北京 102249
  • 收稿日期:2024-11-25 修回日期:2025-05-23 发布日期:2025-11-07
  • 第一作者:黄诚(1985—),男,硕士,副研究员,主要从事油气勘探与地质综合研究方面的工作。地址:(830011)新疆乌鲁木齐市长春南路466号中国石化西北石油局。Email:61783856@qq.com。
  • 通信作者: 隆辉(1998—),男,博士,主要从事油气成藏机理研究方面的工作。Email:1123205200@qq.com。
  • 基金资助:
    国家自然科学基金企业创新发展联合基金项目“克拉通盆地内部走滑断裂体系成因及控藏机制研究——以塔里木盆地为例”(编号:U21B2063)和国家资助博士后研究人员计划“基于人工智能的超深层断控缝洞型碳酸盐岩油气成藏主控因素定量研究”(编号:GZC20242002)联合资助。

Characteristics of strike-slip faults and their controls on hydrocarbon accumulation in Shunbei area, Tarim Basin

HUANG Cheng1, ZHU Lianhua1, BU Xuqiang1, ZENG Jianhui2,3, LONG Hui2,3, LIAO Wenhao2,3, LIU Yazhou2,3, QIAO Juncheng2,3   

  1. 1. Exploration and Development Research Institute of Sinopec Northwest Oilfield Company, Urumqi 830011, China;
    2. College of Earth Sciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. National Key Laboratory of Oil and Gas Resources and Engineering, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2024-11-25 Revised:2025-05-23 Published:2025-11-07

摘要: 近年来,塔里木盆地超深层碳酸盐岩油气勘探获得了突破,在顺北地区多条走滑断裂中均获得了油气发现。通过地震剖面解释,以顺北5号走滑断裂带南段为例,分析了走滑断裂带的通源性、输导作用和储集改造性,并探讨了其控藏作用。研究结果表明:①塔里木盆地顺北地区走滑断裂带在超深层碳酸盐岩油气成藏过程中具有通源性、输导作用和储集改造作用。综合多因素建立半定量评价标准,将通源性划分为强通源、中通源和弱通源3类。②顺北地区发育阿瓦塔格组和吾松格尔组2套膏盐岩地层,影响了油气的跨层输导。膏盐层可划分为逃逸减薄型、破碎隆升型和隆升增厚型3种类型,走滑断裂发育处膏岩层厚度变小,断层活动时,油气易突破膏盐层的封堵而向上运移;受挤压应力影响,膏盐层易发育分支断层,与直立主走滑断层相交,造成地层破碎,油气可通过小型分支断层及破碎的地层向膏岩层上部地层充注,从而进行油气输导。③顺北地区深层碳酸盐岩储集空间主要为洞穴、孔洞和裂缝,地震上具有断裂+“串珠反射”、断裂+“杂乱反射”和断裂+“弱反射”特征,储集体主要为构造应力形成的地层破碎带,后期叠加了深部热液流体的改造作用。裂缝可划分为高角度缝、斜交缝、不规则裂缝及诱导缝等。④顺北地区可划分为“强通源-强输导-优储集-优富集”、“强通源-弱输导-优储集-中富集”和“弱通源-弱输导-差储集-差富集”3种油气富集模式。

关键词: 走滑断裂, 通源性, 输导作用, 储集改造作用, 断控缝洞型油气藏, 奥陶系, 顺北地区, 塔里木盆地

Abstract: In recent years, breakthroughs have been achieved in ultra-deep carbonate oil and gas exploration in Tarim Basin, and hydrocarbons have been discovered across multiple strike-slip fault zones in Shunbei area. Based on seismic profile interpretation, taking the southern section of Shunbei No.5 strike-slip fault zone as an example, the hydrocarbon sources connectivity, transport capacity, and reservoir modification capacity of the strike-slip fault zone were analyzed, and their controlling on hydrocarbon accumulation was discussed. The results show that: (1) Strike-slip fault zones in Shunbei area of Tarim Basin play three crucial roles in ultra-deep carbonate hydrocarbon accumulation: hydrocarbon sources connection, hydrocarbon transport, and reservoir modification. Integrated multiple factors, a semi-quantitative assessment criterion was established to categorize hydrocarbon source connectivity into three types: strong source connectivity, moderate source connectivity, and weak source connectivity. (2) The development of two sets of gypsum salt rock formations (Awatage Formation and Wusongge'er Formation) in Shunbei area has affected the across layer transport of oil and gas. The gypsum salt layer can be classified into three types: escape thinning type, fracture uplift type, and uplift thickening type. The thickness of the gypsum rock layer decreases at the location of strike-slip fault development. When the fault is active, oil and gas easily break through the blockage of the gypsum salt layer and migrate upward. Under the influence of compressive stress, the gypsum salt layer is prone to develop branch faults that intersect with vertical main strike-slip faults, resulting in strata fragment. Oil and gas can be injected into the upper strata of the gypsum layer through small-scale branch faults and fragmented strata, thereby facilitating oil and gas transport. (3) Reservoir spaces in deep carbonate rocks in Shunbei area are mainly caves, vugs, and fractures, which exhibit distinct seismic characteristics of fracture + "beaded reflection", fracture + "chaotic reflection", and fracture + "weak reflection". The reservoirs mainly consist of fractured zones formed by tectonic stress, and subsequently superimposed by deep hydrothermal fluid modification. Fractures can be classified into high-angle fractures, oblique fractures, irregular fractures, and induced fractures. (4) Three enrichment models can be identified in Shunbei area: "strong sourcing-efficient transport-superior reservoir-premium enrichment" "strong sourcing-weak transport-superior reservoir-moderate enrichment" "weak sourcing-weak transport-poor reservoirpoor accumulation".

Key words: strike-slip fault, sources connectivity, transport function, reservoir modification, fault-controlling fracture-cavity reservoir, Ordovician, Shunbei area, Tarim Basin

中图分类号: 

  • TE122.1+2
[1] QI Lixin. Exploration practice and prospects of giant carbonate field in the Lower Paleozoic of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 771-779. 漆立新. 塔里木盆地下古生界碳酸盐岩大油气田勘探实践与展望[J]. 石油与天然气地质, 2014, 35(6): 771-779.
[2] QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.
[3] JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.
[4] ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No.1 fault zone, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(5): 131-138. 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[5] LIN Bo, YUN Lu, LI Haiying, et al. Spatial structure of Shunbei No.5 strike-slip fault and its relationship with oil and gas reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1344-1353. 林波, 云露, 李海英, 等. 塔里木盆地顺北5号走滑断层空间结构及其油气关系[J]. 石油与天然气地质, 2021, 42(6): 1344-1353.
[6] YUN Lu. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. 云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52.
[7] LIU Baozeng. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area, Tarim Basin: Taking Shunbei No.1 and No.5 strike slip fault zones as examples[J]. China Petroleum Exploration, 2020, 25(3): 83-95. 刘宝增. 塔里木盆地顺北地区油气差异聚集主控因素分析: 以顺北1号、顺北5号走滑断裂带为例[J]. 中国石油勘探, 2020, 25(3): 83-95.
[8] CHEN Ping, NENG Yuan, WU Xian, et al. Stratification and segmentation characteristics and tectonic evolution of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(1): 33-42. 陈平, 能源, 吴鲜, 等. 塔里木盆地顺北5号走滑断裂带分层分段特征及构造演化[J]. 新疆石油地质, 2023, 44(1): 33-42.
[9] LIANG Xinxin, ZHANG Yintao, CHEN Shi, et al. Seismic response characteristics of strike-slip fault multi-core damage zones in Fuman Oilfield, Tarim Basin[J]. Lithologic Reservoirs, 2025, 37(2): 127-138. 梁鑫鑫, 张银涛, 陈石, 等. 塔里木盆地富满油田走滑断裂多核破碎带地震响应特征[J]. 岩性油气藏, 2025, 37(2): 127-138.
[10] JIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics, formation & evolution and genetic mechanisms of strikeslip faults in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(8): 81-91. 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91.
[11] SONG Xingguo, CHEN Shi, YANG Minghui, et al. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution[J]. Lithologic Reservoirs, 2023, 35(3): 99-109. 宋兴国, 陈石, 杨明慧, 等. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35 (3): 99-109.
[12] QI Lixin. Characteristics and inspiration of ultra-deep faultkarst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
[13] CAO Zicheng, YUN Lu, QI Lixin, et al. A major discovery of hydrocarbon-bearing layers over 1 000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. 曹自成, 云露, 漆立新, 等. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356.
[14] CHEN Shuyang, HE Yunfeng, WANG Lixin, et al. Architecture characterization and 3D geological modeling of Ordovician carbonate reservoir in Shunbei No.1 fault zone, Tarim Basin[J]. Lithologic Reservoirs, 2024, 36(2): 124-135. 陈叔阳, 何云峰, 王立鑫, 等. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[15] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(2): 144-158. 倪新锋, 沈安江, 乔占峰, 等. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35 (2): 144-158.
[16] WANG Zhen, TANG Daqing, KANG Zhijiang, et al. Development characteristics and its role in controlling oil and gas accumulation of mid-north part of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Earth Science, 2023, 48(11): 4117- 4134. 王珍, 唐大卿, 康志江, 等. 塔里木盆地顺北5号走滑断裂带中北段发育特征及控藏作用[J]. 地球科学, 2023, 48(11): 4117-4134.
[17] DENG Shang, LI Huili, HAN Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5): 990-998. 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40 (5): 990-998.
[18] CHEN Siming, HOU Mingcai, FANG Qifei, et al. Hydrocarbon accumulation and enrichment rule of Ordovician in Yingmai-2 area, northern uplift of Tarim Basin[J]. Lithologic Reservoirs, 2015, 27(6): 64-71. 陈思明, 侯明才, 房启飞, 等. 塔北隆起英买2地区奥陶系油气成藏特征及富集规律[J]. 岩性油气藏, 2015, 27(6): 64-71.
[19] LI Haiying, HAN Jun, CHEN Ping, et al. Deformation and favorable area evaluation of Shunbei No.4 strike-slip fault zone in Tarim Basin[J]. Xinjiang Petroleum Geology, 2023, 44(2): 127-135. 李海英, 韩俊, 陈平, 等. 塔里木盆地顺北4号走滑断裂带变形特征及有利区评价[J]. 新疆石油地质, 2023, 44(2): 127-135.
[20] HAN Jun, KUANG Anpeng, NENG Yuan, et al. Vertical layered structure of Shunbei No.5 strike-slip fault zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2021, 42(2): 152-160. 韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160.
[21] MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
[22] YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142.
[23] HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50 (6): 1162-1172. 何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发, 2023, 50(6): 1162-1172.
[24] LU Zhiqiang, YANG Min. Study on structural model of Ordovician fault-controlled volume in Shunbei oil and gas field[J]. Science Technology and Industry, 2023, 23(19): 210-217. 卢志强, 杨敏. 顺北油气田奥陶系断控体结构模式研究[J]. 科技和产业, 2023, 23(19): 210-217.
[25] PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2): 17-30. 彭军, 夏梦, 曹飞, 等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[26] MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. 马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
[27] BU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir accumulation model of Ordovician faultcontrolled fractured-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3): 152-160. 卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35 (3): 152-160.
[28] PENG Weilong, DENG Shang, ZHANG Jibiao, et al. Genetic mechanism and main control factors of deep marine condensate reservoirs: A case study of the Shunbei No.4 fault zone in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2024, 35 (5): 838-850. 彭威龙, 邓尚, 张继标, 等. 深层海相凝析油气藏成因机制与富集主控因素: 以塔里木盆地顺北4号断裂带为例[J]. 天然气地球科学, 2024, 35(5): 838-850.
[29] MENG Wanbin, XIAO Chunhui, FENG Mingshi, et al. Carbonate diagenesis and its influence on reservoir: A case study from Yijianfang Formation in Shunnan area, central Tarim Basin[J]. Lithologic Reservoirs, 2016, 28(5): 26-33. 孟万斌, 肖春晖, 冯明石, 等. 碳酸盐岩成岩作用及其对储层的影响: 以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016, 28(5): 26-33.
[30] LONG Hui, ZENG Jianhui, LIU Yazhou, et al. Application of visual 3D physical simulation experiment technology in oil and gas accumulation research: A case study of well S53-2 in Shunbei area of Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 1110-1122. 隆辉, 曾溅辉, 刘亚洲, 等. 可视化三维物理模拟实验技术在油气成藏研究中的应用: 以塔里木盆地顺北地区S53-2井为例[J]. 石油实验地质, 2024, 46(5): 1110-1122.
[31] ZHANG Yanqiu, CHEN Honghan, WANG Xiepei, et al. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin[J]. Oil & Gas Geology, 2024, 45(3): 787-800. 张艳秋, 陈红汉, 王燮培, 等. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800.
[32] MA Qingyou, CAO Zicheng, JIANG Huashan, et al. Sourceconnectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei area, Tarim Basin [J]. Marine Origin Petroleum Geology, 2020, 25(4): 327-334. 马庆佑, 曹自成, 蒋华山, 等. 塔河—顺北地区走滑断裂带的通源性及其与油气富集的关系[J]. 海相油气地质, 2020, 25 (4): 327-334.
[33] QIAO Juncheng, CHANG Shaoying, ZENG Jianhui, et al. Origin of differential hydrocarbon accumulation in ultra-deep carbonate reservoirs along strike-slip fault zones in the Fuman area, northern Tarim Basin[J]. Oil & Gas Geology, 2024, 45 (5): 1226-1246. 乔俊程, 常少英, 曾溅辉, 等. 塔里木盆地北部富满地区超深层走滑断裂带碳酸盐岩油气差异成藏成因探讨[J]. 石油与天然气地质, 2024, 45(5): 1226-1246.
[34] DENG Shang, QIU Huabiao, LIU Dawei, et al. Advances in research on the genetic mechanisms of intracratonic strike-slip fault system and their control on hydrocarbon accumulation: A case study of the northern Tarim Basin[J]. Oil & Gas Geology, 2024, 45(5): 1211-1225. 邓尚, 邱华标, 刘大卫, 等. 克拉通内走滑断裂成因与控藏机制研究进展: 以塔里木盆地北部为例[J]. 石油与天然气地质, 2024, 45(5): 1211-1225.
[35] LIU Yuqing, DENG Shang. Structural analysis of intraplate strike-slip faults with small to medium displacement: A case study of the Shunbei 4 fault, Tarim Basin[J]. Journal of China University of Mining & Technology, 2022, 51(1): 124-136. 刘雨晴, 邓尚. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例[J]. 中国矿业大学学报, 2022, 51(1): 124-136.
[36] HU Wenge. Study and practice of characterizing hydrocarbon charging capacity of different fault zones, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(3): 528-541. 胡文革. 塔里木盆地顺北地区不同断裂带油气充注能力表征研究与实践[J]. 石油与天然气地质, 2022, 43(3): 528-541.
[37] LIU Jun, CUI Haifeng, CHEN Yongquan, et al. Effect of gypsum rock on oil-gas accumulating process and its implication for exploration: A case of the Ordovician Maigaiti slope, southwest of Tarim Basin[J]. Natural Gas Geoscience, 2015, 26 (Suppl 1): 139-147. 刘军, 崔海峰, 陈永权, 等. 膏岩层在油气成藏中的作用及勘探意义: 以塔西南麦盖提斜坡区奥陶系为例[J]. 天然气地球科学, 2015, 26(增刊1): 139-147.
[38] XU Zhenping, CHEN Shuping, LUO Caiming, et al. Distribution and sealing capacity evaluation of gypsum-salt rock in the Middle Cambrian in Tarim Basin[J]. China Petroleum Exploration, 2023, 28(5): 54-67. 徐振平, 陈书平, 罗彩明, 等. 塔里木盆地中寒武统膏盐岩分布及封闭性评价[J]. 中国石油勘探, 2023, 28(5): 54-67.
[39] LIAO Zonghu, RECHES Z. An experimentally-based friction law for high-velocity, long-displacement slip-pulse events during earthquakes[J]. Earth and Planetary Science Letters, 2019, 515: 209-220.
[40] LIAO Zonghu, WU Mengni, CHEN Xiaofeng, et al. Fracture mechanical properties of carbonate and evaporite caprocks in Sichuan Basin, China with implications for reservoir seal integrity[J]. Marine and Petroleum Geology, 2020, 119: 104468.
[41] YUN Lu, CAO Zicheng, GENG Feng, et al. Regularity of the Ordovician hydrocarbon system distribution in the Tabei nonforeland area of the Tarim Basin[J]. Oil & Gas Geology, 2025, 46(1): 15-30. 云露, 曹自成, 耿锋, 等. 塔里木盆地塔北台盆区奥陶系油气分布有序性[J]. 石油与天然气地质, 2025, 46(1): 15-30.
[42] JI Tianyu, YANG Wei, WU Xueqiong, et al. Evaluation of Cambrian caprock in the platform-basin area of Tarim Basin and optimization of favorable area for oil and gas caprock[J]. Geology in China, 2022, 49(2): 369-382. 季天愚, 杨威, 武雪琼, 等. 塔里木盆地台盆区寒武系盖层评价及对油气盖层有利区的优选[J]. 中国地质, 2022, 49(2): 369-382.
[43] LIN Tong, WANG Tongshan, PAN Wenqing, et al. Evoluation of sealing effectiveness of gypsolyte during burial: A case study of the gypsolyte caprock in deep Cambrian, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1354-1364. 林潼, 王铜山, 潘文庆, 等. 埋藏过程中膏岩封闭有效性演化特征: 以塔里木盆地寒武系深层膏岩盖层为例[J]. 石油与天然气地质, 2021, 42(6): 1354-1364.
[1] 陆江, 王健, 吴楠, 李程善, 冯子飞. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力[J]. 岩性油气藏, 2025, 37(5): 34-48.
[2] 江山, 唐永建, 焦霞蓉, 李文亮, 黄成, 王泽. 塔里木盆地顺北油田4号断裂带断控体凝析气藏剩余气分布规律[J]. 岩性油气藏, 2025, 37(4): 84-94.
[3] 陈钰桦, 施泽进, 李文杰, 易永杰, 刘恒, 田亚铭, 谭谦. 川东南习水地区下奥陶统层序地层特征及储层发育主控因素[J]. 岩性油气藏, 2025, 37(4): 147-158.
[4] 谢会文, 张亮, 王斌, 罗浩渝, 张科, 章国威, 李玲, 申林. 塔里木盆地库车坳陷三叠纪古构造特征及对沉积的控制作用[J]. 岩性油气藏, 2025, 37(3): 13-22.
[5] 梁鑫鑫, 张银涛, 陈石, 谢舟, 周建勋, 康鹏飞, 陈九洲, 彭梓俊. 塔里木盆地富满油田走滑断裂多核破碎带地震响应特征[J]. 岩性油气藏, 2025, 37(2): 127-138.
[6] 徐兆辉, 曾洪流, 胡素云, 张君龙, 刘伟, 周红英, 马德波, 傅启龙. 地震沉积学在塔里木盆地古城地区下寒武统沉积结构与储层预测中的应用[J]. 岩性油气藏, 2025, 37(2): 153-165.
[7] 熊昶, 王彭, 刘小钰, 王伟, 赵星星, 孙冲. 塔中隆起奥陶系油气性质及运聚富集模式[J]. 岩性油气藏, 2025, 37(1): 53-67.
[8] 吴松, 冯冰, 于继良, 蓝宝锋, 李龙, 王胜, 沈家宁, 李刚权. 黔北正安地区安场向斜奥陶系五峰组—志留系龙马溪组页岩气富集规律[J]. 岩性油气藏, 2025, 37(1): 182-193.
[9] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[10] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[11] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[12] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[13] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[14] 杜江民, 崔子豪, 贾志伟, 张毅, 聂万才, 龙鹏宇, 刘泊远. 鄂尔多斯盆地苏里格地区奥陶系马家沟组马五5亚段沉积特征[J]. 岩性油气藏, 2023, 35(5): 37-48.
[15] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!