岩性油气藏 ›› 2017, Vol. 29 ›› Issue (6): 17.doi: 10.3969/j.issn.1673-8926.2017.06.001
• 油气地质 • 下一篇
郭秋麟1, 武娜1, 任洪佳1, 陈宁生1, 谌卓恒2
GUO Qiulin1, WU Na1, REN Hongjia1, CHEN Ningsheng1, CHEN Zhuoheng2
摘要: 为了研究中低成熟阶段页岩有机质孔与页岩油的关系,对页岩有机质孔成因机理进行了分析,建立了页岩有机质孔隙度定量预测的转化率和产烃率2种理论模型,这2种模型都能够较好地预测页岩有机质孔隙度的上限值。根据扫描电镜观察的面孔率,建立了中低成熟阶段页岩有机质孔隙度预测模型,该模型可以计算页岩有机质孔隙度的近似值。统计分析表明:中国湖相页岩有机质面孔率与Ro之间呈指数关系,在中低成熟阶段,面孔率增长较慢;北美海相页岩有机质面孔率与Ro之间呈对数关系,在中低成熟阶段,面孔率增长较快。最后探讨了中低成熟阶段与高成熟-过成熟阶段页岩有机质孔的区别,指出中国中低成熟阶段湖相页岩有机质孔不如北美海相页岩有机质孔发育。
中图分类号:
[1] 周文, 徐浩, 余谦, 等.四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因.岩性油气藏, 2016, 28(5):18-25. ZHOU W, XU H, YU Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas. Lithologic Reservoirs, 2016, 28(5):18-25. [2] 张小龙, 张同伟, 李艳芳, 等.页岩气勘探和开发进展综述.岩性油气藏, 2013, 25(2):116-122. ZHANG X L, ZHANG T W, LI Y F, et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013, 25(2):116-122. [3] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment.AAPG Bulletin, 2007, 91(4):475-499. [4] CHALMERS G, BUSTIN R, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 2012, 96(6):1099-1119. [5] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity. International Journal of Coal Geology, 2012, 103:26-31. [6] POMMER M, MILLIKEN K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bulletin, 2015, 99(9):1713-1744. [7] 崔景伟, 朱如凯, 崔京钢.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据.地质学报, 2013, 87(5):730-736. CUI J W, ZHU R K, CUI J G. Relationship of porous evolution and residual hydrocarbon:evidence from modeling experiment with geological constrains. Acta Geologica Sinica, 2013, 87(5):730-736. [8] MODICA C J, LAPIERRE S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation:example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin, 2012, 96(1):87-108. [9] 郭秋麟, 陈晓明, 宋焕琪, 等.泥页岩埋藏过程孔隙度演化与预测模型探讨.天然气地球科学, 2013, 24(3):439-449. GUO Q L, CHEN X M, SONG H Q, et al. Evolution and models of shale porosity during burial process. Natural Gas Geoscience, 2013, 24(3):439-449. [10] 吴松涛, 朱如凯, 崔京钢, 等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征.石油勘探与开发, 2015, 42(2):167-176. WU S T, ZHU R K, CUI J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China. Petroleum Exploration and Development, 2015, 42(2):167-176. [11] CHEN Z, JIANG C. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data:example from Duvernay Formation in the Western Canada Sedimentary Basin. AAPG Bulletin, 2016, 100(3):405-422. [12] 王志伟, 卢双舫, 王民, 等.湖相、海相泥页岩孔隙分形特征对比.岩性油气藏, 2016, 28(1):88-93. WANG Z W, LU S F, WANG M, et al. Fractal characteristic of lacustrine shale and marine shale. Lithologic Reservoirs, 2016, 28(1):88-93. [13] 乌立言.生油岩热解快速定量评价.北京:科学出版社, 1986. WU L Y. Quick evaluation quantitatively on the pyrogenation of source rocks. Beijing:Science Press, 1986. [14] 郭秋麟, 米石云, 石广仁, 等.盆地模拟方法原理.北京:石油工业出版社, 1998. GUO Q L, MI S Y, SHI G R, et al. Principle method of basin modeling. Beijing:Petroleum Industry Press, 1998. [15] ORR W L. Comments on pyrolytic hydrocarbon yields in source rock evaluation//Bjøroy M. Advances in petroleum geochemistry. Chichester:Wiley & Sons Ltd., 1981:775-787. [16] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus ormation(Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200. [17] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of devonian and Mississippian New Albany Shale across a maturation gradient:insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 2013, 97(10):1621-1643. [18] 王飞宇, 关晶, 冯伟平, 等.过成熟海相页岩孔隙度演化特征和游离气量.石油勘探与开发, 2013, 40(6):764-768. WANG F Y, GUAN J, FENG W P, et al. Evolution of overmature marine shale porosity and implication to the free gas volume. Petroleum Exploration and Development, 2013, 40(6):764-768. |
[1] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
[2] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[3] | 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133. |
[4] | 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60. |
[5] | 杨滔, 曾联波, 聂海宽, 冯动军, 包汉勇, 王濡岳. 湘中坳陷海陆过渡相页岩吸附能力及控制因素[J]. 岩性油气藏, 2019, 31(2): 105-114. |
[6] | 韩培慧, 闫坤, 曹瑞波, 高淑玲, 佟卉. 聚驱后油层提高采收率驱油方法[J]. 岩性油气藏, 2019, 31(2): 143-150. |
[7] | 姜瑞忠, 沈泽阳, 崔永正, 张福蕾, 张春光, 原建伟. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏, 2018, 30(6): 131-137. |
[8] | 刘晨, 王凯, 王业飞, 周文胜. 针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究[J]. 岩性油气藏, 2017, 29(3): 152-158. |
[9] | 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计[J]. 岩性油气藏, 2017, 29(1): 135-139. |
[10] | 徐 勇,胡士骏,陈国俊,吕成福,薛莲花. 鄂尔多斯盆地东南部长7段陆相页岩孔隙特征与吸附能力[J]. 岩性油气藏, 2016, 28(6): 30-35. |
[11] | 李海涛,李 颖,李亚辉,王 科. 低盐度注水提高碳酸盐岩油藏采收率[J]. 岩性油气藏, 2016, 28(2): 119-126. |
[12] | 李 军,张军华,谭明友,崔世凌,曲志鹏,于景强. CO2驱油及其地震监测技术的国内外研究现状[J]. 岩性油气藏, 2016, 28(1): 128-134. |
[13] | 汤明光,刘清华,张贵才,陈立峰. 抗垢碱提高稠油采收率机理研究[J]. 岩性油气藏, 2014, 26(3): 125-130. |
[14] | 董凤玲,周华东,李志萱,陈莹莹,毕玉帅,王磊. 卫42 断块特低渗油藏挖潜调整研究[J]. 岩性油气藏, 2013, 25(5): 113-116. |
[15] | 叶安平,郭平,王绍平,程忠钊,简瑞. 利用PR 状态方程确定CO2 驱最小混相压力[J]. 岩性油气藏, 2012, 24(6): 125-128. |
|