岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 136–143.doi: 10.12108/yxyqc.20230213

• 地质勘探 • 上一篇    下一篇

伊通盆地岔路河断陷古近系断层的垂向封闭性及其控藏作用

应凯莹1,2, 蔡长娥1,2, 梁煜琦1,2, 陈鸿1,2, 尚文亮1,2, 苏桂娇1,2   

  1. 1. 重庆科技学院 复杂油气田勘探开发重庆市重点实验室, 重庆 401331;
    2. 重庆科技学院 石油与天然气工程学院, 重庆 401331
  • 收稿日期:2022-04-25 修回日期:2022-05-23 发布日期:2023-03-07
  • 第一作者:应凯莹(2001-),女,重庆科技学院在读本科生,研究方向为地质学。地址:(401331)重庆市沙坪坝区大学城东路20号重庆科技学院。Email:kaiyingy@163.com。
  • 通信作者: 蔡长娥(1986-),女,博士,讲师,硕士生导师,主要从事低温热年代学与石油地质学方面的教学与研究工作。Email:ccecai@163.com。
  • 基金资助:
    国家自然科学基金项目“自然演化碎屑锆石裂变径迹的初始径迹长度及径迹长度的影响因素探究”(编号:41802154)与重庆科技学院大学生科技创新训练计划项目“渤海湾盆地纯化地区沙四段断层封闭性定量研究”(编号:2021142)联合资助。

Vertical sealing of Paleogene faults and its control on reservoirs in Chaluhe fault depression, Yitong Basin

YING Kaiying1,2, CAI Chang'e1,2, LIANG Yuqi1,2, CHEN Hong1,2, SHANG Wenliang1,2, SU Guijiao1,2   

  1. 1. Chongqing Key Laborotary of Complex Oil and Gas Field Exploration and Development, Chongqing University of Science & Technology, Chongqing 401331, China;
    2. School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
  • Received:2022-04-25 Revised:2022-05-23 Published:2023-03-07

摘要: 根据测录井、试油等资料,利用断面正压力法对伊通盆地岔路河断陷古近系控藏断层的垂向封闭性进行了研究。研究结果表明: ①通过油气藏的埋藏深度、上覆地层平均密度、断层倾角等数据可计算出油气藏的现今断面正压力。伊通盆地岔路河断陷古近系油气藏的现今断面正压力值为13.3~56.0 MPa,成藏期断面正压力值为3.8~13.1 MPa,表现为“古开启-今封闭”的特征,因断层面所受压力越大,断层越紧闭,从而形成垂向封闭,反之则开启。②将研究区已知油气藏现今断面正压力值的最小值13.3 MPa定义为岔路河断陷垂向封闭的临界值,并进一步确定了控藏断层现今临界埋藏深度为2 262 m。③断面正压力与断层紧闭指数呈正相关关系,控藏断层的垂向封闭临界压力值、临界埋藏深度和断层紧闭指数等参数可定量评价研究区控藏断层封闭性。④断层既可作为油气运移通道,又可为油气藏的形成提供遮挡作用。岔路河断陷西北缘C43油气藏的控藏断层在成藏期表现为垂向开启,与油气大量生排烃时期相吻合,具有沟通油源、运移油气的作用;C43—C48井区的控藏断层现今处于垂向封闭状态,可有效封堵油气。

关键词: 断层封闭性, 断面正压力, 垂向封闭性, 临界压力, 临界埋藏深度, 古近系, 岔路河断陷, 伊通盆地

Abstract: Based on the data of logging and oil test, the vertical sealing of Paleogene faults controlling reservoir in Chaluhe fault depression of Yitong Basin was evaluated by using the method of normal pressure of fault plane. The results show that:(1) The present normal pressure of fault plane of oil and gas reservoirs can be calculated by the data of burial depth, average density of overlying strata and fault dip angle. In the Paleogene, the present normal pressure of Paleogene reservoirs in Chaluhe fault depression of Yitong Basin ranges from 13.3 MPa to 56.0 MPa, and the normal pressure during the reservoir forming period was 3.8-13.1 MPa, showing the characteristics of "ancient opening and present closing". As the greater the pressure on the fault plane, the tighter the fault, thus forming a vertical seal, otherwise open.(2) The minimum value of present normal pressure of fault plane of the reservoirs in the study area is 13.3 MPa, which is defined as the critical value of the vertical sealing of Chaluhe fault depression, and the present critical burial depth of the faults controlling reservoir is further determined to be 2 262 m.(3) The normal pressure of fault plane is positively correlated with the fault tightness index, the vertical sealing critical pressure value, critical burial depth and fault tightness index can be used to quantitatively evaluate the sealing ability of the faults controlling reservoir in the study area.(4) The fault can not only serve as the hydrocarbon migration pathway, but also provide shelter for the formation of reservoirs. The faults controlling reservoir of C43 reservoir in the northwestern margin of Chaluhe fault depression showed a vertical opening during the accumulation period, which coincided with the period of hydrocarbon generation and expulsion, with the function of connecting oil sources and migrating oil and gas. The faults controlling reservoir in well region C43-C48 are now in a vertical sealing state, which can effectively seal oil and gas.

Key words: fault sealing ability, normal pressure of fault plane, vertical sealing ability, critical pressure, critical burial depth, Paleogene, Chaluhe fault depression, Yitong Basin

中图分类号: 

  • TE122
[1] 吕延防, 王帅. 断层封闭性定量评价[J].大庆石油学院学报, 2010, 34(5):35-41. LYU Yanfang, WANG Shuai. Quantitative evaluation of fault lateral sealing[J]. Journal of Daqing Petroleum Institute, 2010, 34(5):35-41.
[2] 付广, 任述民, 赵荣. 利用声波时差资料研究断层垂向封闭性的方法[J].石油地球物理勘探, 1997, 32(5):724-730. FU Guang, REN Shumin, ZHAO Rong. A method for analyzing vertical sealing of fault by acoustilog data[J]. Oil Geophysical Prospecting, 1997, 32(5):724-730.
[3] SMITH D A. Theoretical consideration of sealing and non-sealing faults[J]. AAPG Bulletin, 1966, 50(2):363-371.
[4] ALLAN U S. Model for hydrocarbon migration and entrapment with in faulted structures[J]. AAPG Bulletin, 1989, 73(4):803-811.
[5] 张新顺, 王建平, 李亚晶, 等. 断层封闭性研究方法评述[J]. 岩性油气藏, 2013, 25(2):123-128. ZHANG Xinshun, WANG Jianping, LI Yajing, et al. A comment on research methods of fault sealing capacity[J]. Lithologic Reservoirs, 2013, 25(2):123-128.
[6] YIELDING G, FREEMAN B, NEEDHAM D T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6):897-917.
[7] KNIPE R J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 1997, 81(2):187-195.
[8] 童亨茂. 断层开启与封闭的定量分析[J]. 石油与天然气地质, 1998, 19(3):215-220. TONG Hengmao. Quantitative analysis of fault opening and sealing[J]. Oil & Gas Geology, 1998, 19(3):215-220.
[9] BRETAN J, PETER B, GRAHAM Y. Using calibrated shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin, 2003, 87(3):397-413.
[10] 吕延防, 李国会, 王跃文, 等. 断层封闭性的定量研究方法[J]. 石油学报, 1996, 17(3):39-45. LYU Yanfang, LI Guohui, WANG Yuewen, et al. Quantitative analyses in fault sealing properties[J]. Acta Petrolei Sinica, 1996, 17(3):39-45.
[11] 付广, 宿碧霖, 历娜. 一种利用断层岩泥质含量判断断层侧向封闭性的方法及其应用[J].岩性油气藏, 2016, 28(2):101-106. FU Guang, XU Bilin, LI Na. A method of judging lateral sealing of fault by mudstone content of fault rock and its application[J]. Lithologic Reservoirs, 2016, 28(2):101-106.
[12] 刘震, 谭卓, 蔡东升, 等. 用断层面正压力法分析北部湾盆地涠西南凹陷断层垂向封闭性及其演化[J].地质科学, 2008, 43(4):695-711. LIU Zhen, TAN Zhuo, CAI Dongsheng, et al. Analysis on fault's vertical sealing and its evolution by normal pressure of fault surface method in the Weixianan Sag, Beibu Gulf Basin[J]. Chinese Journal of Geology, 2008, 43(4):695-711.
[13] 李浩, 吴金涛, 黄建廷, 等. 断层垂向封闭性定量分析及其在渤海湾盆地A油田中的应用[J]. 地质科技通报, 2020, 39(4):125-131. LI Hao, WU Jintao, HUANG Jianting, et al. Quantitative analysis of vertical sealing ability and its application in A oilfield of Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(4):125-131.
[14] 田辉, 查明, 石新璞, 等. 断层紧闭指数的计算及其地质意义[J].新疆石油地质, 2003, 24(6):530-532. TIAN Hui, ZHA Ming, SHI Xinpu, et al. Calculation of fault tightness index and its significance for fault sealing[J]. Xinjiang Petroleum Geology, 2003, 24(6):530-532.
[15] ZHANG Likuan, LUO Xiaorong, VASSEUR G, et al. Evaluation of geological factors in characterizing fault connectivity during hydrocarbon migration:Application to the Bohai Bay Basin[J]. Marine and Petroleum Geology, 2011, 28(9):1634-1647.
[16] 张丹凤, 方石, 邱善坤. 断层封启性的研究现状与发展方向[J].吉林大学学报(地球科学版), 2021, 51(1):65-80. ZHANG Danfeng, FANG Shi, QIU Shankun. Current research states and development directions of fault sealing properties[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1):65-80.
[17] 杨静. 伊通盆地岔路河断陷波太凹陷奢岭组成藏条件研究[J].石油知识, 2019, 35(3):34-35. YANG Jing. Study on reservoir-forming conditions of Chaluhe fault depression Botai depression in Yitong Basin[J]. Petroleum Geology, 2019, 35(3):34-35.
[18] 江涛, 邱玉超, 宋立斌, 等. 伊通盆地西北缘断裂带的性质[J]. 现代地质, 2009, 23(5):860-864. JIANG Tao, QIU Yuchao, SONG Libin, et al. Fault nature of north-west fault zone in Yitong Basin and its relation with reservoir accumulation[J]. Geoscience, 2009, 23(5):860-864.
[19] 王海英. 伊通盆地岔路河断陷西北缘构造样式研究[J].中国石油和化工标准与质量, 2013, 33(15):171. WANG Haiying. Study on the structural style of the northwest margin of Chaluhe fault Depression in Yitong Basin[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(15):171.
[20] 唐大卿, 何生, 陈红汉, 等. 伊通盆地断裂体系特征及其演化历史[J].吉林大学学报(地球科学版), 2009, 39(3):386-396. TANG Daqing, HE Sheng, CHEN Honghan, et al. Characteristics of inversion structures in Yitong Basin since Neogene[J]. Acta Petrolei Sinica, 2009, 39(3):386-396.
[21] 江涛, 邱玉超, 邓校国, 等. 狭长走滑断陷盆地构造对沉积-成藏的控制作用:以伊通盆地为例[J]. 石油实验地质, 2012, 34(3):267-271. JIANG Tao, QIU Yuchao, DENG Xiaoguo, et al. Controlling effect of channel strike-slip fault basin on deposition and accumulation:A case study in Yitong Basin[J]. Petroleum Geology & Experiment, 2012, 34(3):267-271.
[22] 蔡长娥, 刘震, 邓守伟, 等. 伊通盆地西北缘深层储层动态评价[J].中国矿业大学学报, 2015, 44(1):116-124. CAI Chang'e, LIU Zhen, DENG Shouwei, et al. Dynamic evaluation for the deep reservoir in the northwest of Yitong Basin[J]. Journal of China University of Mining & Technology, 2015, 44(1):116-124.
[23] 李本才, 孙凯, 白洪彬, 等. 伊通盆地层序地层格架与层序构成分析[J].岩性油气藏, 2009, 21(4):28-31. LI Bencai, SUN Kai, BAI Hongbin, et al. Sequence stratigraphic framework and sequence components of the Yitong Basin[J]. Lithologic Reservoirs, 2009, 21(4):28-31.
[24] 唐大卿, 陈红汉, 江涛, 等. 伊通盆地新近纪差异构造反转与油气成藏[J].石油探勘与开发, 2013, 40(6):682-691. TANG Daqing, CHENG Honghan, JIANG Tao, et al. Neogene differential structural inversion and hydrocarbon accumulation in the Yitong Basin, East China[J]. Petroleum Exploration and Development, 2013, 40(6):682-691.
[25] 骆鑫.伊通盆地波太凹陷双阳组致密气成藏潜力[J].石油知识, 2022, 38(1):60-61. LUO Xin. Tight gas accumulation potential of Shuangyang Formation in Botai Sag, Yitong Basin[J]. Petroleum Knowledge, 2022, 38(1):60-61.
[26] 任森林, 刘琳, 徐雷. 断层封闭性研究方法[J].岩性油气藏, 2011, 23(5):101-105. REN Senlin, LIU Lin, XU Lei. Research methods of fault sealing[J]. Lithologic Reservoirs, 2011, 23(5):101-105.
[27] 丰勇, 陈红汉, 叶加仁, 等. 伊通盆地岔路河断陷油气成藏过程[J].地球科学——中国地质大学学报, 2009, 34(3):502-510. FENG Yong, CHEN Honghan, YE Jiaren, et al. Reservoir-forming periods and accumulation process of Chaluhe fault depression of Yitong Basin[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(3):502-510.
[1] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[2] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[3] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[4] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[5] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[6] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[7] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[8] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[9] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
[10] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[11] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[12] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[13] 郑彬, 董翱, 张源智, 张毅, 苏珊, 张士超, 樊津津, 骆垠山. 济阳坳陷渤南洼陷古近系沙河街组流体压力建场过程及其石油地质意义[J]. 岩性油气藏, 2023, 35(2): 59-67.
[14] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[15] 黄军立, 张伟, 刘力辉, 蔡国富, 曾有良, 孟庆友, 刘浩. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏, 2023, 35(2): 103-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .