岩性油气藏 ›› 2019, Vol. 31 ›› Issue (1): 159–164.doi: 10.12108/yxyqc.20190119

• 石油工程 • 上一篇    

大粒径调剖颗粒封堵机理及深部运移性能评价

陈宇豪, 王克亮, 李根, 逯春晶   

  1. 东北石油大学 提高采收率教育部重点实验室, 黑龙江 大庆 163318
  • 收稿日期:2018-09-08 修回日期:2018-11-07 出版日期:2019-01-18 发布日期:2019-01-18
  • 通讯作者: 王克亮(1964-),男,教授,博士生导师,主要从事提高采收率理论与技术的研究工作。Email:wangkl0608@126.com。 E-mail:wangkl0608@126.com
  • 作者简介:陈宇豪(1993-),男,东北石油大学在读硕士研究生,研究方向为堵水调剖理论与技术。地址:(163318)黑龙江省大庆市萨尔图区学府街99号东北石油大学石油工程学院提高采收率教育部重点实验室。Email:15636993226@163.com
  • 基金资助:
    黑龙江省普通本科高等学校青年创新人才基金项目“带活性基团的多孔材料的合成及气体分离性能的研究”(编号:UNPYSCT-2018041)资助

Plugging mechanism of large size profile control particles and deep migration performance

CHEN Yuhao, WANG Keliang, LI Gen, LU Chunjing   

  1. Key Laboratory of Enhanced Oil Recovery, Ministry of Education, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2018-09-08 Revised:2018-11-07 Online:2019-01-18 Published:2019-01-18

摘要: 大粒径弹性调剖颗粒不同于常规调剖剂,通过合理运用可以有效改善地层深部的非均质性,然而目前受实验装置的限制,大粒径颗粒的室内注入实验研究十分有限。针对这一问题制作了裂缝模型及颗粒顶替装置,并设计了基于现场应用的一种粒径为1~5 mm的弹性调剖颗粒的封堵及深部运移性能评价实验。通过连接在顶替装置上的压力传感器记录压力数据,绘制了注入压力-时间曲线,总结了相关的数据分析方法;在数据处理方面提出颗粒变形通过压力这一参数用来评价颗粒的深部运移能力及其对目标裂缝的封堵能力,并通过改变颗粒体系中颗粒的含量来研究颗粒用量对于封堵和运移效果的影响。实验结果表明,调剖颗粒体系中颗粒的含量越高,封堵及深部运移作用的效果越好;1 mm粒径颗粒深部运移能力较强,3 mm粒径颗粒封堵能力较强,均适用于深部调剖,而5 mm粒径颗粒刚性封堵能力太强,不适用于深部调剖;在实际应用中应结合实施措施区块的地质条件以及措施实施目的进行颗粒选择。该项实验的设计及相应分析方法简单、有效,所需装置也较易获取,可为同类大粒径调剖颗粒性能研究的室内实验提供借鉴。

关键词: 大粒径弹性颗粒, 封堵能力, 深部运移能力, 颗粒含量

Abstract: Large size elastic profile control particle is different from conventional profile control agent. It can effectively improve the heterogeneity of deep formation by reasonable use. However,due to the limitation of experimental equipment,the laboratory injection experiment of large size particles is limited. In order to solve this problem,fracture model and particle displacement device were made,and a kind of plugging and deep migration performance evaluation experiment of elastic profile control particle with particle size of 1-5 mm was designed based on field application. Based on the pressure data that were recorded by pressure sensors connected to the displacement device,pressure-time curves were drawn and relevant data analysis methods were summarized. The particle deformation through pressure was proposed to evaluate the deep migration ability and plugging ability of particle,and the effects of particle content on plugging and migration were investigated by changing the content of particles in the profile agent system. The experiment results show that the higher the particle content in profile control particle system,the better the effect of plugging and deep migration. The migration ability of 1 mm particle is stronger and the plugging ability of 3 mm particle is stronger. Both 1 mm particle and 3 mm particle can be applied to the deep profile control. The rigid plugging ability of 5 mm particle diameter is so strong that it's not suitable for the deep profile control. In field application,the particle selection should be carried out in combination with the geological condition of the target block and the purpose of the profile control. The design of the experiment and the corresponding analysis method are simple and effective,and the required devices are easier to obtain. This experimental method can be used for reference in laboratory experiments on the performance of similar large size profile control particles.

Key words: large size elastic profile control particles, plugging ability, deep migration ability, particle content

中图分类号: 

  • TE357
[1] 胡浩.基于砂体结构的剩余油挖潜调整措施研究.岩性油气藏,2016,28(4):113-120. HU H. Adjustment measures of remaining oil tapping based on sand body structure. Lithologic Reservoirs,2016,28(4):113-120.
[2] 许雅.秦家屯油田低渗裂缝油藏调剖技术优化探索.石油地质与工程,2017,31(5):110-112. XU Y. Optimization of profile control technology for low permeability fractured reservoirs in Qinjiatun Oilfield. Petroleum Geology and Engineering,2017,31(5):110-112.
[3] 彭晓娟.整体调剖技术在125 m井距一类油层区块的应用.大庆石油地质与开发,2016,35(6):128-131. PENG X J. Application of the profile-integrally-controlling technique in type I oil reservoirs with 125 m well spacing. Petroleum Geology and Oilfield Development in Daqing,2016,35(6):128-131.
[4] 李宪文,郭方元,黎晓茸,等. 陕北低渗透裂缝性油藏调剖试验研究. 石油钻采工艺,2011,33(6):95-98. LI X W,GUO F Y,LI X R,et al. Pilot test effect analysis of profile control for fractured low permeability reservoirs in northern Shaanxi. Oil Drilling & Production Technology,2011, 33(6):95-98.
[5] 梁丹,吕鑫,蒋珊珊,等. 渤海油田分级组合深部调剖技术. 石油钻探技术,2015,43(2):104-109. LIANG D,LYU X,JIANG S S,et al. Deep profile control technology of Bohai Oilfield. Petroleum Drilling Techniques,2015, 43(2):104-109.
[6] 蒲万芬,文彩琳,刘锐,等.NPLS颗粒调剖剂的研制与评价. 化学研究与应用,2015,27(8):1134-1138. PU W F,WEN C L,LIU R,et al. Development and evaluation of the NPLS profile control agent. Chemical Research and Application,2015,27(8):1134-1138.
[7] OORT E V,FRIEDHEIM J,PIERCE T,et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores. SPE 125093,2009.
[8] WANG J,ZHANG H L,LIU H Q,et al. Quantification of transportation of deformable gel particles in porous media. SPE 187266,2017.
[9] 秦义,刘玉莉,张立东,等. 柔性凝胶颗粒调剖剂的室内研究. 精细石油化工,2016,33(4):23-27. QIN Y,LIU Y L,ZHANG L D,et al. Laboratory study of flexible gel particle profile control agent. Speciality Petrochemicals, 2016,33(4):23-27.
[10] 张继风.水驱油田开发效果评价方法综述及发展趋势.岩性油气藏,2012,24(3):118-122. ZHANG J F. Evaluation methods of development effect for water drive oilfield and development trend. Lithologic Reservoirs, 2012,24(3):118-122.
[11] YAO C J,XU X H,WANG D,et al. Research and application of micron-size polyacrylamide elastic microspheres as a smart sweep improvement and profile modification agent. SPE 179531,2016.
[12] 周泉,陈凤,王力,等. 柔性微球颗粒调剖剂的性能表征. 东北石油大学学报,2013,37(5):90-96. ZHOU Q,CHEN F,WANG L,et al. Performance characterization of flexible microsphere profile control agent. Journal of Northeast Petroleum University,2013,37(5):90-96.
[13] 殷柱.ST-1型颗粒调剖剂性能评价.化工设计通讯,2016,42(11):13-14. YIN Z. Test evaluation of ST-1 particle profile control agent. Chemi cal Engineering Design Communications,2016,42(11):13-14.
[14] 曾源,陈世加,李士祥,等.鄂尔多斯盆地正宁地区长8油层组储层特征.岩性油气藏,2017,29(6):32-42. ZENG Y,CHEN S J,LI S X,et al. Characteristics of Chang 8 reservoir in Zhengning area,Ordos Basin. Lithologic Reservoirs,2017,29(6):32-42.
[15] 张保康,徐国瑞,铁磊磊,等."堵水+调剖"工艺参数优化和油藏适应性评价:以渤海SZ36-1油田为例.岩性油气藏,2017, 29(5):155-161. ZHANG B K,XU G R,TIE L L,et al. Optimization of technological parameters and evaluation of reservoir adaptation by water plugging and profile control:a case from Bohai SZ36-1 oilfield. Lithologic Reservoirs,2017,29(5):155-161.
[16] 朱怀江,程杰成,隋新光,等. 柔性转向剂性能及作用机理研究. 石油学报,2008,29(1):79-83. ZHU H J,CHENG J C,SUI X G,et al. Characteristics and action mechanism of the flexible agent applied in fluid diversion of reservoirs. Acta Petrolei Sinica,2008,29(1):79-83.
[17] 吴莎. 橡胶颗粒与地层孔喉匹配关系研究与应用. 石油化工应用,2012,31(12):21-24. WU S. Research and application on the matching relationship of rubber particle to formation. Petrochemical Industry Application,2012,31(12):21-24.
[18] 任晓娟,李晓骁,鲁永辉,等.改进型HV高强度凝胶堵水体系的应用.岩性油气藏,2018,30(5):131-137. REN X J,LI X X,LU Y H,et al. Application on HV highstrength gel water plugging system. Lithologic Reservoirs, 2018,30(5):131-137.
[19] 马红卫,李宜坤,朱怀江,等. 柔性转向剂作用机理及其先导试验. 大庆石油地质与开发,2008,27(4):92-94. MA H W,LI Y K,ZHU H J,et al. Mechanism and pilot test of flexible particle. Petroleum Geology & Oilfield Development in Daqing,2008,27(4):92-94.
[20] BAI B,ZHANG H. Preformed-particle-gel transport through open fractures and its effect on water flow. SPE 129908,2010.
[21] PANTHI K,MOHANTY K K. Salinity-sensitive polymeric particles for EOR. SPE 179627,2016.
[22] BAI B,WEI M Z,LIU Y Z. Field and lab experience with a successful preformed particle gel conformance control technology. SPE 164511,2013.
[1] 罗向荣, 赵波, 任晓娟, 魏静, 张贞贞, 王杠杠, 周航轩. 预交联凝胶颗粒的力学性能对微观运移封堵的影响[J]. 岩性油气藏, 2021, 33(4): 176-184.
[2] 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154.
[3] 王付勇, 杨坤. 致密油藏孔喉分布特征对渗吸驱油规律的影响[J]. 岩性油气藏, 2021, 33(2): 155-162.
[4] 戚涛, 胡勇, 李骞, 赵梓寒, 张春, 李滔. 考虑弥散的混溶驱替模拟[J]. 岩性油气藏, 2020, 32(5): 161-169.
[5] 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响[J]. 岩性油气藏, 2020, 32(4): 48-58.
[6] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[7] 郑玉飞, 李翔, 徐景亮, 郑伟杰, 于萌. 储层非均质性对自生CO2调驱效果的影响[J]. 岩性油气藏, 2020, 32(2): 122-128.
[8] 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160.
[9] 赵超峰, 贾振甲, 田建涛, 高荣锦, 张伟, 赵建宇. 基于井中微地震监测方法的压裂效果评价——以吉林探区Y22井为例[J]. 岩性油气藏, 2020, 32(2): 161-168.
[10] 史文洋, 姚约东, 程时清, 顾少华, 石志良. 川西潮坪相裂缝型碳酸盐岩分层酸压井压力动态分析[J]. 岩性油气藏, 2020, 32(1): 152-160.
[11] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[12] 卞晓冰, 侯磊, 蒋廷学, 高东伟, 张驰. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6): 161-168.
[13] 刘秀婵, 陈西泮, 刘伟, 王霞. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏, 2019, 31(5): 114-120.
[14] 唐梅荣, 张同伍, 白晓虎, 王泫懿, 李川. 孔喉结构对CO2驱储层伤害程度的影响[J]. 岩性油气藏, 2019, 31(3): 113-119.
[15] 王华超, 韩登林, 欧阳传湘, 周嘉义, 王倩倩, 马力. 库车坳陷北部阿合组致密砂岩储层特征及主控因素[J]. 岩性油气藏, 2019, 31(2): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 冯心远,王宇超,胡自多,李 斐,邵喜春. 基于叠后地震记录求取整形算子的叠前资料拼接技术[J]. 岩性油气藏, 2007, 19(3): 93 -96 .
[4] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[5] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[6] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[7] 潘建国,卫平生,张虎权,谭开俊. 地震储层学与相关学科的比较[J]. 岩性油气藏, 2010, 22(3): 1 -4 .
[8] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[9] 邢二涛,张云锋. 水平井开发技术在贝中区N1 段应用研究[J]. 岩性油气藏, 2010, 22(Z1): 93 -95 .
[10] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .