岩性油气藏 ›› 2019, Vol. 31 ›› Issue (1): 159164.doi: 10.12108/yxyqc.20190119
• 石油工程 • 上一篇
陈宇豪, 王克亮, 李根, 逯春晶
CHEN Yuhao, WANG Keliang, LI Gen, LU Chunjing
摘要: 大粒径弹性调剖颗粒不同于常规调剖剂,通过合理运用可以有效改善地层深部的非均质性,然而目前受实验装置的限制,大粒径颗粒的室内注入实验研究十分有限。针对这一问题制作了裂缝模型及颗粒顶替装置,并设计了基于现场应用的一种粒径为1~5 mm的弹性调剖颗粒的封堵及深部运移性能评价实验。通过连接在顶替装置上的压力传感器记录压力数据,绘制了注入压力-时间曲线,总结了相关的数据分析方法;在数据处理方面提出颗粒变形通过压力这一参数用来评价颗粒的深部运移能力及其对目标裂缝的封堵能力,并通过改变颗粒体系中颗粒的含量来研究颗粒用量对于封堵和运移效果的影响。实验结果表明,调剖颗粒体系中颗粒的含量越高,封堵及深部运移作用的效果越好;1 mm粒径颗粒深部运移能力较强,3 mm粒径颗粒封堵能力较强,均适用于深部调剖,而5 mm粒径颗粒刚性封堵能力太强,不适用于深部调剖;在实际应用中应结合实施措施区块的地质条件以及措施实施目的进行颗粒选择。该项实验的设计及相应分析方法简单、有效,所需装置也较易获取,可为同类大粒径调剖颗粒性能研究的室内实验提供借鉴。
中图分类号:
[1] 胡浩.基于砂体结构的剩余油挖潜调整措施研究.岩性油气藏,2016,28(4):113-120. HU H. Adjustment measures of remaining oil tapping based on sand body structure. Lithologic Reservoirs,2016,28(4):113-120. [2] 许雅.秦家屯油田低渗裂缝油藏调剖技术优化探索.石油地质与工程,2017,31(5):110-112. XU Y. Optimization of profile control technology for low permeability fractured reservoirs in Qinjiatun Oilfield. Petroleum Geology and Engineering,2017,31(5):110-112. [3] 彭晓娟.整体调剖技术在125 m井距一类油层区块的应用.大庆石油地质与开发,2016,35(6):128-131. PENG X J. Application of the profile-integrally-controlling technique in type I oil reservoirs with 125 m well spacing. Petroleum Geology and Oilfield Development in Daqing,2016,35(6):128-131. [4] 李宪文,郭方元,黎晓茸,等. 陕北低渗透裂缝性油藏调剖试验研究. 石油钻采工艺,2011,33(6):95-98. LI X W,GUO F Y,LI X R,et al. Pilot test effect analysis of profile control for fractured low permeability reservoirs in northern Shaanxi. Oil Drilling & Production Technology,2011, 33(6):95-98. [5] 梁丹,吕鑫,蒋珊珊,等. 渤海油田分级组合深部调剖技术. 石油钻探技术,2015,43(2):104-109. LIANG D,LYU X,JIANG S S,et al. Deep profile control technology of Bohai Oilfield. Petroleum Drilling Techniques,2015, 43(2):104-109. [6] 蒲万芬,文彩琳,刘锐,等.NPLS颗粒调剖剂的研制与评价. 化学研究与应用,2015,27(8):1134-1138. PU W F,WEN C L,LIU R,et al. Development and evaluation of the NPLS profile control agent. Chemical Research and Application,2015,27(8):1134-1138. [7] OORT E V,FRIEDHEIM J,PIERCE T,et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores. SPE 125093,2009. [8] WANG J,ZHANG H L,LIU H Q,et al. Quantification of transportation of deformable gel particles in porous media. SPE 187266,2017. [9] 秦义,刘玉莉,张立东,等. 柔性凝胶颗粒调剖剂的室内研究. 精细石油化工,2016,33(4):23-27. QIN Y,LIU Y L,ZHANG L D,et al. Laboratory study of flexible gel particle profile control agent. Speciality Petrochemicals, 2016,33(4):23-27. [10] 张继风.水驱油田开发效果评价方法综述及发展趋势.岩性油气藏,2012,24(3):118-122. ZHANG J F. Evaluation methods of development effect for water drive oilfield and development trend. Lithologic Reservoirs, 2012,24(3):118-122. [11] YAO C J,XU X H,WANG D,et al. Research and application of micron-size polyacrylamide elastic microspheres as a smart sweep improvement and profile modification agent. SPE 179531,2016. [12] 周泉,陈凤,王力,等. 柔性微球颗粒调剖剂的性能表征. 东北石油大学学报,2013,37(5):90-96. ZHOU Q,CHEN F,WANG L,et al. Performance characterization of flexible microsphere profile control agent. Journal of Northeast Petroleum University,2013,37(5):90-96. [13] 殷柱.ST-1型颗粒调剖剂性能评价.化工设计通讯,2016,42(11):13-14. YIN Z. Test evaluation of ST-1 particle profile control agent. Chemi cal Engineering Design Communications,2016,42(11):13-14. [14] 曾源,陈世加,李士祥,等.鄂尔多斯盆地正宁地区长8油层组储层特征.岩性油气藏,2017,29(6):32-42. ZENG Y,CHEN S J,LI S X,et al. Characteristics of Chang 8 reservoir in Zhengning area,Ordos Basin. Lithologic Reservoirs,2017,29(6):32-42. [15] 张保康,徐国瑞,铁磊磊,等."堵水+调剖"工艺参数优化和油藏适应性评价:以渤海SZ36-1油田为例.岩性油气藏,2017, 29(5):155-161. ZHANG B K,XU G R,TIE L L,et al. Optimization of technological parameters and evaluation of reservoir adaptation by water plugging and profile control:a case from Bohai SZ36-1 oilfield. Lithologic Reservoirs,2017,29(5):155-161. [16] 朱怀江,程杰成,隋新光,等. 柔性转向剂性能及作用机理研究. 石油学报,2008,29(1):79-83. ZHU H J,CHENG J C,SUI X G,et al. Characteristics and action mechanism of the flexible agent applied in fluid diversion of reservoirs. Acta Petrolei Sinica,2008,29(1):79-83. [17] 吴莎. 橡胶颗粒与地层孔喉匹配关系研究与应用. 石油化工应用,2012,31(12):21-24. WU S. Research and application on the matching relationship of rubber particle to formation. Petrochemical Industry Application,2012,31(12):21-24. [18] 任晓娟,李晓骁,鲁永辉,等.改进型HV高强度凝胶堵水体系的应用.岩性油气藏,2018,30(5):131-137. REN X J,LI X X,LU Y H,et al. Application on HV highstrength gel water plugging system. Lithologic Reservoirs, 2018,30(5):131-137. [19] 马红卫,李宜坤,朱怀江,等. 柔性转向剂作用机理及其先导试验. 大庆石油地质与开发,2008,27(4):92-94. MA H W,LI Y K,ZHU H J,et al. Mechanism and pilot test of flexible particle. Petroleum Geology & Oilfield Development in Daqing,2008,27(4):92-94. [20] BAI B,ZHANG H. Preformed-particle-gel transport through open fractures and its effect on water flow. SPE 129908,2010. [21] PANTHI K,MOHANTY K K. Salinity-sensitive polymeric particles for EOR. SPE 179627,2016. [22] BAI B,WEI M Z,LIU Y Z. Field and lab experience with a successful preformed particle gel conformance control technology. SPE 164511,2013. |
[1] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[2] | 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177. |
[3] | 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157. |
[4] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[5] | 谢坤, 苏程, 刘长龙, 梅杰, 于海涛, 何欣, 卢祥国. Cr3+聚合物弱凝胶调驱剖面变化规律及改善方法[J]. 岩性油气藏, 2022, 34(6): 160-170. |
[6] | 易俊, 涂志雄, 彭建云, 孔嫦娥, 魏军会, 李建明. 耐温抗盐APR堵剂在英买力气藏的应用[J]. 岩性油气藏, 2021, 33(5): 155-162. |
[7] | 未志杰, 康晓东. 煤层气藏强化采收全流固耦合模型[J]. 岩性油气藏, 2021, 33(5): 181-188. |
[8] | 罗向荣, 赵波, 任晓娟, 魏静, 张贞贞, 王杠杠, 周航轩. 预交联凝胶颗粒的力学性能对微观运移封堵的影响[J]. 岩性油气藏, 2021, 33(4): 176-184. |
[9] | 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154. |
[10] | 王付勇, 杨坤. 致密油藏孔喉分布特征对渗吸驱油规律的影响[J]. 岩性油气藏, 2021, 33(2): 155-162. |
[11] | 戚涛, 胡勇, 李骞, 赵梓寒, 张春, 李滔. 考虑弥散的混溶驱替模拟[J]. 岩性油气藏, 2020, 32(5): 161-169. |
[12] | 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响[J]. 岩性油气藏, 2020, 32(4): 48-58. |
[13] | 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142. |
[14] | 郑玉飞, 李翔, 徐景亮, 郑伟杰, 于萌. 储层非均质性对自生CO2调驱效果的影响[J]. 岩性油气藏, 2020, 32(2): 122-128. |
[15] | 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160. |
|