岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 59–69.doi: 10.12108/yxyqc.20210506

• 油气地质 • 上一篇    下一篇

阿姆河盆地东部牛津阶微生物灰岩储层特征及成因

马文辛, 欧阳诚, 廖波勇, 徐邱康, 陈仁金, 王欣, 夏慧萍, 张婷   

  1. 中国石油川庆钻探工程有限公司 地质勘探开发研究院, 成都 610059
  • 收稿日期:2020-11-02 修回日期:2021-02-09 出版日期:2021-10-01 发布日期:2021-09-30
  • 第一作者:马文辛(1982-),女,博士,高级工程师,主要从事油气地质综合研究。地址:(610059)四川省成都市成华区建设北路一段83号。Email:mwx_0725@cnpc.com.cn。
  • 基金资助:
    “十三五”国家科技重大专项“丝绸之路经济带大型碳酸盐岩油气藏开发关键技术”(编号:2017ZX05030-003-004)和“阿姆河右岸东部高陡复杂构造带北区气田缝洞体综合评价与油气富集规律研究”(编号:CQ2020B-2-1-1)资助

Characteristics and genesis of Oxfordian microbial limestone reservoirs in eastern Amu Darya Basin

MA Wenxin, OUYANG Cheng, LIAO Boyong, XU Qiukang, CHEN Renjin, WANG Xin, XIA Huiping, ZHANG Ting   

  1. Research Institute of Geological Exploration & Development, Chuanqing Drilling Engineering Co., Ltd., CNPC, Chengdu 610051, China
  • Received:2020-11-02 Revised:2021-02-09 Online:2021-10-01 Published:2021-09-30

摘要: 阿姆河盆地东部上侏罗统牛津阶微生物灰岩层是最主要的油气勘探开发目标层,明确该套微生物岩储层特征及其成因,对勘探开发具有重要的理论与实际意义。利用36口探井岩心、薄片、物性和地球化学分析资料,结合测井与地震资料,开展了该套微生物灰岩沉积微相特征、储集岩石学与储集物性特征、储集空间特征与储集类型研究,并进一步探讨了该套微生物灰岩储层的成因。结果表明:卡拉别克凹陷-桑迪克雷隆起-别什肯特坳陷为碳酸盐岩起伏状上缓坡沉积环境,广泛发育了微生物黏结丘/礁/滩及丘滩与礁滩复合体微相。其中,凝块岩是最好的储集岩,发育Ⅱ类储层;其次为微生物黏结形成的球粒/砂屑/生屑灰岩,发育Ⅲ类储层。基萨尔山前为碳酸盐岩起伏状下缓坡沉积环境,主要发育含微生物颗粒泥晶灰岩微相,储集岩是受构造与溶蚀改造后的(含)颗粒泥晶灰岩及泥晶灰岩,发育Ⅳ类储层。储层主要成因为:①微生物黏结丘/礁/滩长期处于浅埋藏成岩环境,有利于原生粒间孔的保存,是研究区牛津阶微生物岩储层发育与形成的重要基础。②燕山运动晚期(距今119 Ma)、喜山运动早期(距今61.31 Ma)2期构造破裂作用形成的断层与微裂缝,有助于外来流体对微生物丘/礁/滩内部基质的改造,是研究区微生物灰岩储层发育与形成的重要前提。③烃类有机酸快速侵位与有机酸溶蚀、高温地层流体与深部热液、TSR作用3类流体叠加溶蚀改造,是研究区微生物储层发育与形成的关键。

关键词: 微生物储层, 碳酸盐岩, 牛津阶, 上侏罗统, 阿姆河盆地

Abstract: The Upper Jurassic Oxfordian microbial limestone layer is the most important oil & gas exploration target layer in eastern Amu Darya Basin. Clarifying the characteristics and genesis of this microbial reservoir has important theoretical and practical significance for oil & gas exploration and development. Based on cores, thin sections, physical properties and geochemical analysis data of 36 wells, combined with logging and seismic data, the sedimentary microfacies characteristics, reservoir petrology and physical properties, reservoir space characteristics and reservoir types were studied, and the genesis of microbial limestone reservoir was discussed. The results show that the depositional environment of Karabek Sag-Sandy Klei uplift-Beishkent depression is undulating up gentle slope, and microfacies of microbial adhesion mound, reef, shoal, mound shoal or reef shoal are widely developed. Thrombolite is the best reservoir rocks with type Ⅱ. Pellets, sand, biological limestone, which are formed by microbial aggregation or bonded, is the secondly developed reservoir rocks with type Ⅲ. The depositional environment of Kisar piedmont front is bottom gentle slope, mainly developed microfacies containing microbial particles muddy limestone, and reservoir rocks are microbial granular micrite limestone and micritic limestone with type Ⅳ reservoir, which formed by tectonic movement and dissolution transformation. It is concluded that favorable microbial adhesion mounds, reefs, shoals have been in a shallow buried diagenetic environment with a long time, which is conducive to preservation of primary intragranular pores. It is an important foundation for the development and formation of Oxfordian microbial rock reservoirs in the study area. The faults and microcracks, formed in two stages of tectonic movement(Late Yanshan 119 Ma, Early Himalayan 61.31 Ma), are beneficial for the reservoir reformation of microbial mound, reefs, shoal microfacies. It is another important condition for the development and formation of microbial limestone reservoirs in the study area. Three types of fluid superimposed dissolution and reformation on the reservoir, including hydrocarbon rapidly invading and dissolution by organic acid, high temperature formation fluid and deep hydrothermal fluid, TSR reaction, are the key for the development and formation of microbial reservoirs in the study area.

Key words: microbial reservoir, carbonate, Oxfordian, Upper Jurassic, Amu Darya Basin

中图分类号: 

  • TE121.2
[1] 徐剑良, 程绪彬, 吴蕾, 等.阿姆河右岸区块构造演化与成藏条件.天然气工业, 2010, 30(5):18-20. XU J L, CHENG X B, WU L, et al. Structural evolution and hydrocarbon pooling conditions in the Amu Darya right bank block, Turkmenistan. Natural Gas Industry, 2010, 30(5):18-20.
[2] 费怀义, 徐刚, 王强, 等.阿姆河右岸区块气藏特征.天然气工业, 2010, 30(5):13-17. FEI H Y, XU G, WANG Q, et al. Characteristics of gas reservoirs in the Amu Darya right bank block, Turkmenistan. Natural Gas Industry, 2010, 30(5):13-17.
[3] 徐文礼.缓斜坡碳酸盐岩台地沉积模式:以土库曼斯坦阿姆河盆地中-上侏罗统卡洛夫-牛津阶为例.成都:成都理工大学, 2013. XU W L. Sedimentary model of glacis carbonate platform-taking Callovian-Oxfordian of Upper-Middle Jurassic in Amu-Darya Basin of Turkmenistan as an example. Chengdu:Chengdu University of Technology, 2013.
[4] 文华国, 宫博识, 郑荣才, 等.土库曼斯坦萨曼杰佩气田卡洛夫-牛津阶碳酸盐岩沉积-成岩系统. 吉林大学学报(地球科学版), 2012, 42(4):991-1002. WEN H G, GONG B S, ZHENG R C, et al. Deposition and diagenetic system of carbonate in Callovian-Oxfordian of Samandepe gas field, Turkmenistan. Journal of Jilin University(Earth Science Edition), 2012, 42(4):991-1002.
[5] LI F J, JING X G, ZOU CH Y, et al. Facies analysis of the Callovian-Oxfordian carbonates in the northeastern Amu Darya Basin, southeastern Turkmenistan. Marine and Petroleum Geology, 2017, 88:359-380.
[6] XU W L, WEN H G, ZHENG R C, et al. The carbonate platform model and reservoirs' origins of the Callovian-Oxfordian stage in the Amu Darya Basin, Turkmenistan. Crystals, 2018, 8(2):84-105.
[7] 王强, 费怀义, 刘合年, 等.阿姆河盆地恰什古伊地区卡洛夫-牛津阶储层特征.岩性油气藏, 2013, 25(2):41-48. WANG Q, FEI H Y, LIU H N, et al. Reservoir characteristics of Callovian-Oxfordian in Chashgui area, Amu Darya Basin. Lithology Reservoirs, 2013, 25(2):41-48.
[8] 马文辛, 黄文明, 梁霄.阿姆河盆地东部中-上侏罗统碳酸盐岩储层形成和保存机理差异化研究. 第31届全国天然气学术论文集(地质勘探). 北京:石油工业出版社, 2019:52-65. MA W X, HUANG W M, LIANG X. Differences of formation and preservation mechanism of Mid-Upper Jurassic carbonate reservoirs in the eastern Amu Darya Basin. The 31st National Natural Gas Academic Symposium(Geological Exploration). Beijing:Petroleum Industry Press, 2019:52-65.
[9] 吕功训, 邓民敏, 吴蕾, 等.阿姆河右岸盐下碳酸盐岩大型气田勘探与开发.北京:科学出版社, 2013:14-15 LYU G X, DENG M M, WU L, et al. Exploration and development of a large carbonate gas field under the subsalt rock on the right bank of the Amu Darya. Beijing:Science Press, 2013:14-15.
[10] 梅冥相. 从凝块石概念的演变论微生物碳酸盐岩的研究进展.地质科技情报, 2007, 26(6):1-9. MEI M X. Discussion on advances of microbial carbonates from the terminological change of thrombolites. Geological Science and Technology Information, 2007, 26(6):1-9.
[11] 梅冥相, 马永生, 周丕康, 等.碳酸盐沉积学导论.北京:地震出版社, 1997:1-306. MEI M X, MA Y S, ZHOU P K, et al. Carbonate sedimentology theory introduction. Beijing:Seismological Press, 1997:1-306.
[12] 国家石油和化学工业局. SY/T 5388-2000碳酸盐岩储层的划分方法.北京:石油工业出版社, 2000. State Administration of Petroleum and Chemical Industry. SY/T 5388-2000 The dividing method for carbonate reservoir. Beijing:Petroleum Industry Press, 2000.
[13] 徐文礼, 郑荣才, 费怀义, 等. 土库曼斯坦阿姆河右岸卡洛夫-牛津阶裂缝特征及形成期次.天然气工业, 2012, 32(4):33-38. XU W L, ZHENG R C, FEI H Y, et al. Characteristics and timing of fractures in the Callovian-Oxfordian in the Amu Darya right bank block, Turkmenistan. Natural Gas Industry, 2012, 32(4):33-38.
[14] 郑荣才, 刘合年, 吴蕾, 等.阿姆河卡洛夫-牛津阶碳酸盐岩储层地球化学特征和成岩流体分析. 岩石学报, 2012, 28(3):961-970. ZHENG R C, LIU H N, WU L, et al. Geochemical characteristics and diagenetic fluid of the Callovian-Oxfordian carbonate reservoirs in Amu Darya Basin. Acta Petrologica Sinica, 2012, 28(3):961-970.
[15] 王强, 王兴志, 徐剑良, 等.恰什古伊地区碳氧同位素地层学分析.西南石油大学学报(自然科学版), 2014, 36(3):27-34. WANG Q, WANG X Z, XU J L, et al. Carbon and oxygen isotope stratigraphy research in Chashgui area. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(3):27-34.
[16] 郑荣才, 赵灿, 刘合年, 等.阿姆河盆地卡洛夫-牛津阶碳酸盐岩阴极发光性及其研究意义. 成都理工大学学报(自然科学版), 2010, 37(4):377-385. ZHENG R C, ZHAO C, LIU H N, et al. Cathodoluminescence and its significance of the Callovian-Oxfordian carbonate rocks in Amu Darya Basin, Turkmenistan. Journal of Chengdu University of Technology(Science & Technology Edition), 2010, 37(4):377-385.
[17] 朱光有, 张水昌, 梁英波, 等.四川盆地高含H2S天然气的分布与TSR成因证据.地质学报, 2006, 80(8):1208-1218. ZHU G Y, ZHANG S C, LIANG Y B, et al. Distribution of high H2S-bearing natural gas and evidence of TSR origin in the Sichuan Basin. Acta Geologica Sinica, 2006, 80(8):1208-1218.
[18] 朱光有, 张水昌, 梁英波, 等.川东北飞仙关组H2S的分布与古环境的关系研究, 石油勘探与开发, 2005, 32(4):65-69. ZHU G Y, ZHANG S C, LIANG Y B, et al. Relationship between paleoenvironment and the distribution of H2S in Feixianguan Formation, NE Sichuan Province. Petroleum Exploration and Development, 2005, 32(4):65-69.
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 李长海, 赵伦, 刘波, 赵文琪, 王淑琴, 李建新, 郑天宇, 李伟强. 滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝网络连通性评价[J]. 岩性油气藏, 2024, 36(2): 113-123.
[3] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[4] 王雪柯, 王震, 计智锋, 尹微, 姜仁, 侯珏, 张艺琼. 滨里海盆地东缘石炭系盐下碳酸盐岩油气藏成藏规律与勘探技术[J]. 岩性油气藏, 2023, 35(6): 54-62.
[5] 罗贝维, 尹继全, 胡广成, 陈华, 康敬程, 肖萌, 朱秋影, 段海岗. 阿联酋西部地区白垩系森诺曼阶高孔渗灰岩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(6): 63-71.
[6] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
[7] 刘亚明, 王丹丹, 田作基, 张志伟, 王童奎, 王朝锋, 阳孝法, 周玉冰. 巴西桑托斯盆地复杂碳酸盐岩油田火成岩发育特征及预测方法[J]. 岩性油气藏, 2023, 35(6): 127-137.
[8] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
[9] 王建功, 李江涛, 李翔, 高妍芳, 张平, 孙秀建, 白亚东, 左洺滔. 柴西地区新生界湖相微生物碳酸盐岩岩相组合差异性及控制因素[J]. 岩性油气藏, 2023, 35(3): 1-17.
[10] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[11] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[12] 刘永立, 李国蓉, 何钊, 田家奇, 李肖肖. 塔北地区寒武系层序地层格架与台缘带展布特征[J]. 岩性油气藏, 2022, 34(6): 80-91.
[13] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[14] 李珊珊, 姜鹏飞, 刘磊, 雷程, 曾云贤, 陈仕臻, 周刚. 四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J]. 岩性油气藏, 2022, 34(4): 22-31.
[15] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .