岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 104–116.doi: 10.12108/yxyqc.20220310

• 地质勘探 • 上一篇    下一篇

塔里木盆地迪那2气田古近系离散裂缝表征与建模

陈袁1, 廖发明1, 吕波1, 贾伟1, 宋秋强1, 吴燕1, 亢鞠1, 鲜让之2   

  1. 1. 中国石油塔里木油田分公司 迪那油气开发部, 新疆 库尔勒 841000;
    2. 中国石油塔里木油田分公司 监督中心, 新疆 库尔勒 841000
  • 收稿日期:2021-06-28 修回日期:2021-09-22 出版日期:2022-05-01 发布日期:2022-05-12
  • 作者简介:陈袁(1987-),男,硕士,高级工程师,主要从事油藏描述及地质建模等方面的科研工作。地址:(841000)新疆库尔勒塔指小区黄楼。Email:cyuan-tlm@petrochina.com.cn。
  • 基金资助:
    中国石油科技重大专项“库车坳陷深层—超深层天然气开发关键技术研究与应用”(编号:2018E-1803)资助

Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin

CHEN Yuan1, LIAO Faming1, LYU Bo1, JIA Wei1, SONG Qiuqiang1, WU Yan1, KANG Ju1, XIAN Rangzhi2   

  1. 1. Dina Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    2. Supervision Center, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2021-06-28 Revised:2021-09-22 Online:2022-05-01 Published:2022-05-12

摘要: 通过岩心分析、成像测井、地球物理、储层地质、油藏动态等资料,对塔里木盆地迪那2气田古近系裂缝进行了研究。利用构造光滑、三维边界探测和边界加强等联合技术识别不同尺度的裂缝分布,采用分级次的裂缝建模技术建立裂缝分布的三维地质模型。研究结果表明:①迪那地区古近系裂缝走向以近东西向的高角度斜交缝和垂直缝为主,宏观裂缝真开度普遍小于0.460mm,线密度均值为0.730条/m,充填程度较高;微观裂缝真开度小于0.037mm,面密度均值为0.031条/m2,充填程度低,裂缝多为与构造变形及断裂作用相关的剪裂缝。②三维最小曲率地震属性对断层和裂缝响应敏感。联合边界探测处理及三维边界增强等技术识别的蚂蚁体在断层和裂缝的识别度方面明显提高。沉积储层及生产动态特征可用于预测井间小尺度裂缝的分布。③储层模拟采用相控条件下的序贯高斯随机模拟,模拟前后孔隙度和渗透率数据基本保持一致,计算模型地质储量较真实储量误差小,地质模型整体上能客观反映气藏地质特征。④将研究区的4组裂缝的不同属性体做权重分析,利用不同权重系数对属性体进行融合建立裂缝密度属性场,最后通过优选裂缝建模方法,对不同裂缝组设置相应的模型参数,完成离散裂缝三维地质建模,通过动态验证地层系数总体误差小于5%。

关键词: 动态优化, 裂缝建模, 地质建模, 裂缝描述, 古近系, 迪那2气田, 塔里木盆地

Abstract: Based on the data of core analysis,imaging logging, geophysics,reservoir geology and reservoir performance,the basic parameters of fractures of Paleogene in Dina-2 gas field of Tarim Basin were described. The joint technologies such as structural smoothing,three-dimensional boundary detecting and boundary strengthening were used to identify the multi-scale fracture distribution,and then a three-dimensional geological model of fracture distribution was established by using multi-scale fracture modeling technology. The results show that: (1)The Paleogene fractures in Dina area are mainly high angle oblique fractures and vertical fractures in near EW direction. The true opening of macro fractures is generally less than 0.460 mm,the average linear density is 0.730 pieces per meter,the filling degree is high. The true opening of micro fractures is less than 0.037 mm, the average surface density is 0.031 pieces per square meter,and the filling degree is low. Most of the fractures are shear fractures related to structural deformation and faulting.(2)The three-dimensional minimum curvature seismic attribute is sensitive to faults and fractures. The ant-tracking attribute volumes identified by boundary detecting and three-dimensional boundary strengthening technology has significantly improved the recognition degree of faults and fractures. The sedimentary reservoir and production performance characteristics can be used to predict the distribution of small-scale fractures between wells.(3)The sequential Gaussian random simulation under facies-controlled conditions was adopted for reservoir simulation. The porosity and permeability before and after simulation are basically consistent. The error between the calculated geological reserves and real reserves is small. On the whole,the geological model can objectively reflect the underground geological characteristics of gas reservoir.(4)The weights were analyzed with different attribute volumes of the four groups of fractures in the study area. The attribute volumes were fused with different weight coefficients to establish the fracture density attribute field. By optimizing the fracture modeling method,the corresponding model parameters were set for different fracture groups to complete the three-dimensional geological model of discrete fractures. Through dynamic verification,the overall error of formation coefficient is less than 5%.

Key words: dynamic optimization, fracture modeling, geological modeling, fracture characterization, Paleogene, Dina-2 gas field, Tarim Basin

中图分类号: 

  • TE122.1
[1] 周新桂,张林炎,范昆.油气盆地低渗透储层裂缝预测研究现状及进展[J].地质论评, 2006, 52(6):777-782. ZHOU Xingui, ZHANG Linyan, FAN Kun. The research situation and progresses of natural fracture for low permeability reservoirs in oil and gas basin[J]. Geological Review, 2006, 52(6):777-782.
[2] 曾联波.低渗透砂岩油气储层裂缝及其渗流特征[J].地质科学, 2004, 39(1):11-17. ZENG Lianbo. Fissure and its seepage characteristics in lowpermeable sandstone reservoir[J]. Chinese Journal of Geology, 2004, 39(1):11-17.
[3] MAIER C, GEIGER S. Combining unstructured grids, discrete fracture representation and dual-porosity models for improved simulation of naturally fractured reservoirs[J]. SPE 166049, 2013:125-130.
[4] BACA R G, ARNETT R C, LANGFORD D W. Modeling fluid flow in fractured-porous rock masses by finite-element techniques[J]. International Journal for Numerical Methods in Fluids, 1984, 4(4):337-348.
[5] 何更生,唐海.油层物理[M].北京:石油工业出版社, 2011:32-78. HE Gengsheng, TANG Hai. Reservoir physics[M]. Beijing:Petroleum Industry Press, 2011:32-78.
[6] 邓西里,李佳鸿,刘丽,等.裂缝性储集层表征及建模方法研究进展[J].高校地质学报, 2015, 21(2):306-319. DENG Xili, LI Jiahong, LIU Li, et al. Advances in the study of fractured reservoir characterization and modeling[J]. Geological Journal of China Universities, 2015, 21(2):306-319.
[7] BAECHER G B. Statistical analysis of rock mass fracturing[J]. Journal of the International Association for Mathematical Geology, 1983, 15(2):329-348.
[8] LONG J C S, REMER J S, WILSON C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3):645-658.
[9] DERSHOWITZ W S, EINSTEIN H H. Characterizing rock joint geometry with joint system models[J]. Rock Mechanics and Rock Engineering, 1988, 21(1):21-51.
[10] IVANOVA V M. Three-dimensional stochastic modeling of rock fracture systems[R]. Massachusetts Institute of Technology, 2005:18-56.
[11] 许同海.致密储层裂缝识别的测井方法及研究进展[J].油气地质与采收率, 2005, 12(3):75-78. XU Tonghai. Logging method and its research progress in identification of tight reservoirs fractures[J]. Petroleum Geology and Recovery Efficiency, 2005, 12(3):75-78.
[12] 李志勇,曾佐勋,罗文强.裂缝预测主曲率法的新探索[J].石油勘探与开发, 2003, 30(6):83-85. LI Zhiyong, ZENG Zuoxun, LUO Wenqiang. A new approach for predicting fractures using principal curvature[J]. Petroleum Exploration and Development, 2003, 30(6):83-85.
[13] 赵万金,周春雷.基于Contourlet变换的图像增强技术识别裂缝[J].岩性油气藏, 2017, 29(3):103-109. ZHAO Wanjin, ZHOU Chunlei. Application of image enhancement technique to fracture identification based on Contourlet transform[J]. Lithologic Reservoirs, 2017, 29(3):103-109.
[14] 贺振华,胡光岷,黄德济.致密储层裂缝发育带的地震识别及相应策略[J].石油地球物理勘探, 2005, 40(2):190-195. HE Zhenhua, HU Guangmin, HUANG Deji. Seismic identification of fracture-developed zone of dense reservoir and relative strategy[J]. Oil Geophysical Prospecting, 2005, 40(2):190-195.
[15] 张亚春,尹太举,周文.在蚂蚁属性体约束下的裂缝建模方法研究[J].长江大学学报(自科版), 2016, 13(14):16-21. ZHANG Yachun, YIN Taiju, ZHOU Wen. The fracture modeling in the constraint of ant tracking attribute[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(14):16-21.
[16] 孙炜,李玉凤,付建伟,等.测井及地震裂缝识别研究进展[J].地球物理学进展, 2014, 29(3):1231-1242. SUN Wei, LI Yufeng, FU Jianwei, et al. Review of fracture identification with well logs and seismic data[J]. Progress in Geophysics, 2014, 29(3):1231-1242.
[17] 黄辅琼,欧阳健,肖承文.储层岩心裂缝与试件裂缝定量描述方法研究[J].测井技术, 1997, 21(5):356-360. HUANG Fuqiong, OUYANG Jian, XIAO Chengwen. A quantitative description method for cores and tested samples fractures[J]. Well Logging Technology, 1997, 21(5):356-360.
[18] 周新桂,邓宏文,操成杰,等.储层构造裂缝定量预测研究及评价方法[J].地球学报, 2003, 24(2):175-180.ZHOU Xingui, DENG Hongwen, CAO Chengjie, et al. The methods for quantitative prediction and evaluation of structural fissures in reservoirs[J]. Acta Geoscientia Sinica, 2003, 24(2):175-180.
[19] 王建君,李井亮,李林,等.基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J].岩性油气藏, 2020, 32(5):122-132. WANG Jianjun, LI Jingliang, LI Lin, et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs, 2020, 32(5):122-132.
[20] 王蓓,刘向君,司马立强,等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J].岩性油气藏, 2019, 31(2):124-133. WANG Bei, LIU Xiangjun, SIMA Liqiang, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application[J]. Lithologic Reservoirs, 2019, 31(2):124-133.
[21] WENG Xiaowei, KRESSE O, CHUPRAKOV D, et al. Applying complex fracture model and integrated workflow in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2014, 124:468-483.
[22] 王时林,秦启荣,苏培东.储层裂缝识别与预测[J].断块油气田, 2009, 16(5):31-33. WANG Shilin, QIN Qirong, SU Peidong. Identification and prediction of reservoir fracture[J]. Fault-Block Oil&Gas Field, 2009, 16(5):31-33.
[23] 张雨晴,王志章.致密碎屑岩裂缝性储层预测方法综述[J].科技导报, 2010, 28(14):109-112. ZHANG Yuqing, WANG Zhizhang. A review of prediction methods for reservoirs of tight fractured clastic rock[J]. Science&Technology Review, 2010, 28(14):109-112.
[24] 周文.裂缝性油气储集层评价方法[M].成都:四川科学技术出版社, 1998:39-88. ZHOU Wen. Evaluation methods of fracture reservoir in oil and gas pool[M]. Chengdu:Sichuan Science and Technology Press, 1998:39-88.
[25] 张学汝,陈和平,张吉昌,等.变质岩储集层构造裂缝研究技术[M].北京:石油工业出版社, 1999:20-21. ZHANG Xueru, CHEN Heping, ZHANG Jichang, et al. Structural fracture research technology of metamorphic reservoir[M]. Beijing:Petroleum Industry Press, 1999:20-21.
[26] DERSHOWITZ W S. A probabilistic model for the deformability of jointed rock masses[M]. Massachusetts:MIT and Cambridge, 1979:18-65.
[27] DERSHOWITZ W S, POINTE P L. FracMan user documentation[M]. Seattle:Golder Associates Inc., 1993:1-42.
[28] DERSHOWITZ W S. Fractured reservoir discrete fracture network technologies[M]. Seattle:Golder Associates Inc., 1996:1-22.
[29] EINSTEIN H H,BAECHER G B. Probabilistic and statistical methods in engineering geology[J]. Rock Mechanics and Rock Engineering, 1983, 16(1):47-61.
[30] 童亨茂,钱祥麟.储层裂缝的研究和分析方法[J].石油大学学报(自然科学版), 1994, 18(6):14-20. TONG Hengmao, QIAN Xianglin. Research and analysis on natural fracture[J]. Journal of the University of Petroleum, China (Edition of Natural Sciences), 1994, 18(6):14-20.
[31] 付晓飞,苏玉平,吕延防,等.断裂和裂缝的分形特征[J].地球科学——中国地质大学学报, 2007, 32(2):227-234. FU Xiaofei, SU Yuping, LYU Yanfang, et al. Fractural characteristic and geological meaning of fault and fracture[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(2):227-234.
[32] 刘振峰,曲寿利,孙建国,等.地震裂缝预测技术研究进展[J].石油物探, 2012, 51(2):191-198. LIU Zhenfeng, QU Shouli, SUN Jianguo, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):191-198.
[33] 孙炜,李玉凤,付建伟,等.测井及地震裂缝识别研究进展[J].地球物理学进展, 2014, 29(3):1231-1242. SUN Wei, LI Yufeng, FU Jianwei, et al. Review of fracture identification with well logs and seismic data[J]. Progress in Geophysics, 2014, 29(3):1231-1242.
[34] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41.
[35] PEDERSEN S I, SKOV T, RANDEN T,et al. Automatic fault extraction using artificial ants[J]. SEG Technical Program Expanded Abstracts, 2002, 21:512-515.
[36] NELSON R A. Geologic analysis of naturally fractured reservoirs[M]. Huston:Gulf Publishing Company, 1985:189-231.
[37] NARR W, SUPPE J. Joint spacing in sedimentary rocks[J]. Journal of Structural Geology, 1991, 13(9):1037-1048.
[38] 曾联波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社, 2008:25-46. ZENG Lianbo. Formation and distribution of fractures in low permeability sandstone reservoirs[M]. Beijing:Science Press, 2008:25-46.
[39] 曾联波,漆家福,王永秀.低渗透储层构造裂缝的成因类型及其形成地质条件[J].石油学报, 2007, 28(4):52-56. ZENG Lianbo, QI Jiafu, WANG Yongxiu. Origin type of tectonic fractures and geological conditions in low-permeability reservoirs[J]. Acta Petrolei Sinica, 2007, 28(4):52-56.
[40] 袁静,曹宇,李际,等.库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J].石油与天然气地质, 2017, 38(5):840-850. YUAN Jing, CAO Yu, LI Ji, et al. Diversities and disparities of fracture systems in the Paleogene in DN gas field, Kuqa Depression, Tarim Basin[J]. Oil&Gas Geology, 2017, 38(5):840-850.
[41] 孟召平,彭苏萍,傅继彤.含煤岩系岩石力学性质控制因素探讨[J].岩石力学与工程学报, 2002, 21(1):102-106. MENG Zhaoping, PENG Suping, FU Jitong. Study on control factors of rock mechanics properties of coal-bearing formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1):102-106.
[42] 曾联波,漆家福,王成刚.构造应力对裂缝形成与流体流动的影响[J].地学前缘, 2008, 15(3):292-298. ZENG Lianbo, QI Jiafu, WANG Chenggang. The influence of tectonic stress on fracture formation and fluid flow[J]. Earth Science Frontiers, 2008, 15(3):292-298.
[1] 何玉, 周星, 李少轩, 丁洪波. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69.
[2] 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81.
[3] 郭美洁, 时保宏, 董雄英, 李昊东, 何川. 黄骅坳陷埕海斜坡古近系油气成藏条件及主控因素[J]. 岩性油气藏, 2022, 34(3): 82-92.
[4] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[5] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[6] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[7] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[8] 王素英, 张翔, 田景春, 彭明鸿, 郑潇宇, 夏永涛. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5): 81-94.
[9] 张汶, 吕世聪, 赵大林, 贾海松, 蔡越钎. 渤海湾盆地西南部古近系滩坝沉积特征及主控因素[J]. 岩性油气藏, 2021, 33(3): 85-94.
[10] 黄华, 袁娟梅, 彭伟, 张亮, 文辉. 江汉盆地古近系潜江组盐湖沉积特征与成藏模式[J]. 岩性油气藏, 2021, 33(2): 9-16.
[11] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[12] 向巧维, 李小平, 丁琳, 杜家元. 珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J]. 岩性油气藏, 2021, 33(2): 93-103.
[13] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[14] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
[15] 刘恭利, 韩自军, 段新意, 甄宗玉. 薄互层火成岩地震响应特征及厚度预测[J]. 岩性油气藏, 2019, 31(3): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!