|
Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin
NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao
Lithologic Reservoirs
2023, 35 (2):
144-158.
DOI: 10.12108/yxyqc.20230214
Based on core thin section, experimental analysis, drilling, logging and seismic data, the Ordovician carbonate karst reservoirs in Tarim Basin were classified according to the reservoir genetic mechanism, and the distribution, space types and main control factors of various reservoirs were analyzed. The results show that:(1) The Ordovician fracture-vuggy karst reservoirs in Tarim Basin can be divided into five types according to their genesis:(quasi-) syngenetic karst reservoirs, interlayer karst reservoirs, bedding karst reservoirs, buried hill(weathering crust) karst reservoirs and fault-controlled karst reservoirs.(2) (Quasi-) syngenetic karst reservoirs, also known as reef-shoal karst reservoirs, are the reservoir formed by short-term(transient) exposure and leaching of reefshoal facies granular limestone at the platform edge or within the platform due to sea level drop, with matrix pores, dissolved fractures and dissolved caves being developed. They are usually superimposed with later interlayer karst or buried hill karst to form complex karst reservoirs.(3) The interlayer karst reservoirs are developed in the inner zone, and they are related to the parallel(micro-angle) unconformity surface in the carbonate strata and distributed quasi-stratified. The reservoir space is mainly cave type, followed by fracture-vuggy type and vuggy type.(4) The bedding karst reservoirs are related to the slope background, pre-existing pores and fractures around the buried hill, and the surrounding of the buried hill is distributed in a ring band, dominated by vuggy type and fracture-vuggy type, and more than 90% of the dissolved pores and caves are connected through faults and fractures.(5) The buried hill(weathering crust) karst reservoirs are developed in buried hill area. They are related to medium to long-term angle unconformity and greatly affected by faults and fractures. They are quasi-stratified and have obvious characteristics of peak and hill geomorphology. According to the lithology of the surrounding rocks, they can be divided into limestone buried hill karst reservoirs and dolomite weathering crust karst reservoirs. The limestone fracture-vuggy system is developed, the matrix pores are not developed, and the dolomite fracture-vuggy is underdeveloped, mainly consisting of dolomite intercrystalline dissolved pores and fractures.(6) Controlled by faults, karst reservoirs are mainly developed in the fault development area of inner zone. The fractures and vuggy are developed with large burial depth, large scale and long span, and they are distributed in a grid-shape along the faults, dominated by fracture-vuggy type, followed by fault-cave type. The more developed the faults and fractures are, the more developed the dissolved vuggy and caves are, and the higher and more stable the single well oil testing productivity is.(7) Karst reservoirs in the study area are largely developed in the interior area, mainly bedding karst reservoirs and karst reservoirs controlled by faults, with great exploration potential.
Reference |
Related Articles |
Metrics
|
|