岩性油气藏 ›› 2012, Vol. 24 ›› Issue (5): 12–18.doi: 10.3969/j.issn.1673-8926.2012.05.002

• 学科前缘 • 上一篇    下一篇

地震波反演成像方法的理论分析与对比

任浩然1,王华忠2,黄光辉3   

  1. 1.浙江大学地球科学系,浙江杭州310027; 2.同济大学海洋与地球科学学院,上海200092; 3.中国科学院计算数学与科学工程计算研究所,北京100190
  • 出版日期:2012-10-20 发布日期:2012-10-20
  • 作者简介:任浩然(1982-),男,浙江大学在站博士后,研究方向为地震波反演成像方法与应用。地址:(310027)浙江省杭州市西湖区浙大路38号浙江大学地球科学系地球物理教研室。电话:(0571)87951196。E-mail:renhaoran@gmail.com
  • 基金资助:

    国家科技重大专项“山前带地震高精度成像技术研究”(编号:2011ZX05005-005-008HZ)和国家重点基础研究发展规划“973”项目 “基于散射点道集的全波形速度反演与成像”(编号:2011CB202402)联合资助。

Theoretical analysis and comparison of seismic wave inversion and imaging methods

REN Haoran1, WANG Huazhong2, HUANG Guanghui3   

  1. 1. Department of Earth Sciences, Zhejiang University, Hangzhou 370012, China; 2. School of Ocean and Earth Science, Tongji University, Shanghai 200092, China; 3. Institute of Computational Mathematics and Scientific/Engineering Computing, Beijing 100190, China
  • Online:2012-10-20 Published:2012-10-20

摘要:

全波形反演、旅行时层析、最小二乘偏移和偏移速度分析具有相同的反演框架,以Bayes 估计理论 为基础对这些方法进行了分析和对比,证明了全波形反演能够利用最多的地震信息,但多重因素的叠加 加大了其实用性的难度。针对这一问题,以特征波形反演为指导,对提取的地震波场的特征化信息进行了 地震反演,并对其反演方案进行了理论分析和对比。

关键词: 成岩作用, 成岩阶段, 储层, 沙三段, 板桥凹陷

Abstract:

Based on the mathematical and physical theory of wave equation, the full waveform inversion, travel-time tomography, least squares migration and migration velocity analysis can be included into a same inversion frame. Based on Bayes theory, this paper analyzed and compared these methods. It is proved that the full waveform inversion can use most seismic information, but the overlying of different information increases the difficulty of its usage. Under the guidance of signature waveform inversion, the characterized information were extracted to carry out seismic inversion, and several schemes were analyzed and compared theoretically.

Key words: diagenesis, diagenetic stage, reservoir, Sha 3 member, Banqiao Sag

[1] Backus G E,Gilbert J F. The resolving power of gross earth data[J]. Geophysical Journal of the Royal Astronomical Society,1968,16:169-205.
[2] Claerbout J F. Toward a unified theory of reflector mapping [J].Geophysics,1971,36(3):467-481.
[3] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics,1984,49(8):1259-1266.
[4] Barnes C,Charara M,Tsuchiya T. Feasibility study for an anisotropic full waveform inversion of cross-well seismic data[J]. Geophysical Prospecting,2008,56(6):897-906.
[5] Malinowski M,Operto S,Ribodetti A. High-resolution seismic attenuation imaging from wide-aperture onshore data by visco-acoustic frequency-domain full-waveform inversion[J]. Geophysical Journal International,2011,186(3):1179-1204.
[6] Al-Yahya K. Velocity analysis by iterative profile migration [J].Geophysics,1989,54(6):718-729.
[7] Deregowski S. Common-offset migrations and velocity analysis[J].First Break,1990,8(6):225-234.
[8] Sava P,Biondi B. Wave-equation migration velocity analysis—Ⅰ:Theory[J]. Geophysical Prospecting,2004,52:593-606.
[9] Devaney A J. A filtered backpropagation algorithm for diffractiontomography[J]. Ultrasonic Imaging,1982,4(4):336-350.
[10] Wu R S,Toksoz M N. Diffraction tomography and multisource holography applied to seismic imaging[J]. Geophysics,1987,52(1):11-25.
[11] De Wolf D A. Renormalization of EM fields in application to largeangle scattering from randomly continuous media and sparse particle distributions[J]. IEEE transactions on Antennas and Propagation,1985,33:608-615.
[12] 朱小三.地震散射点成像和非均匀介质中广义散射层析成像反演[D].北京:北京大学地球与空间科学学院,2010.
[13] 刘玉柱,董良国.初至波层析影响因素分析[J].石油地球物理勘探,2007,42(5):544-553.
[14] Billette F,Lambare G. Velocity macro-model estimation from seismic reflection data by stereo-tomography[J]. Geophysical Journal International,1998,135(2):671-690.
[15] Harris JM,Nolen-Hoeksema R C,Langan R T, et al. High-resolution crosswell imaging of a west Texas carbonate reservoir:Part 1—Project summary and interpretation [J]. Geophysics,1995,60 (3):667 -681.
[16] Xie X B,Yang H. The finite-frequency sensitivity kernel for migration residual moveout and its applications in migration velocity analysis[J]. Geophysics,2008,73(6):S241-S249.
[17] Pratt R G. Seismic waveform inversion in the frequency domain,PartⅠ:Theory and verification in a physical scale model[J]. Geophysics,1999,64(3):888-901.
[18] Shin C,Cha Y H. Waveform inversion in the Laplace domain[J].Geophysical Journal International,2008,173(3):922-931.
[19] Ren H,Wu R S,Wang H.Wave equation least square imaging using the local angular Hessian for amplitude correction[J]. Geophysical Prospecting,2011,59(4):651-661.
[20] Xu S,Wang D,Chen F,et al. Full waveform inversion for reflected seismic data[C]. 74th EAGE Conference&Exhibition,2012:W024.
[21] Virieux J,Operto S. An overview of full waveform inversion in exploration geophysics [J]. Geophysics,2009,74 (6):WCC127-WCC152.
[22] 任浩然.声介质地震波反演成像方法研究[D].上海:同济大学海洋与地球科学学院,2011.
[23] Bunks C,Saleck F M,Zaleski S,et al. Multiscale seismic waveform inversion[J]. Geophysics,1995,60(5):1457-1473.
[1] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[2] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[3] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
[4] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[5] 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26.
[6] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[7] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[8] 何绪全, 黄东, 赵艾琳, 李育聪. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.
[9] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[10] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[11] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[12] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[13] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92.
[14] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[15] 张闻亭, 龙礼文, 肖文华, 魏浩元, 李铁锋, 董震宇. 酒泉盆地青西凹陷窟窿山构造带下沟组沉积特征及储层预测[J]. 岩性油气藏, 2021, 33(1): 186-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .