岩性油气藏 ›› 2017, Vol. 29 ›› Issue (2): 139–144.doi: 10.3969/j.issn.1673-8926.2017.02.017

• 技术方法 • 上一篇    下一篇

基于煤岩脆性指数的煤体结构测井定量判识

艾林1,2, 周明顺3, 张杰4, 梁霄1,2, 钱博文1,2, 刘迪仁1,2   

  1. 1. 油气资源与勘探技术教育部重点实验室(长江大学), 武汉 430100;
    2. 长江大学 非常规油气湖北省协同创新中心, 武汉 430100;
    3. 中国石油华北油田分公司 勘探开发研究院, 河北 任丘 062552;
    4. 中国石油华北油田分公司 地球物理勘探研究院, 河北 任丘 062552
  • 收稿日期:2016-08-29 修回日期:2016-10-19 出版日期:2017-03-21 发布日期:2017-03-21
  • 第一作者:艾林(1990-),男,长江大学在读硕士研究生,研究方向为测井方法原理和煤层气测井评价。地址:(430100)湖北省武汉市蔡甸区大学路111号长江大学武汉校区。Email:1393737530@qq.com
  • 通信作者: 刘迪仁(1965-),男,博士,教授,主要从事测井正反演及复杂储层测井评价等方面的教学和科研工作。Email:liudr666@163.com。
  • 基金资助:
    国家自然科学基金项目“地层条件下富有机质页岩电磁响应机理与应用基础研究”(编号:U1562109)资助

Quantitative identification of coal structure based on coal rock brittleness index by logging data

AI Lin1,2, ZHOU Mingshun3, ZHANG Jie4, LIANG Xiao1,2, QIAN Bowen1,2, LIU Diren1,2   

  1. 1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China;
    2. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China;
    3. Research Institute of Exploration and Development, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China;
    4. Research Institute of Geophysical Exploration, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China
  • Received:2016-08-29 Revised:2016-10-19 Online:2017-03-21 Published:2017-03-21

摘要: 准确判识煤体结构是煤层气勘探开发研究的一个关键问题,不同煤体结构类型的煤层,因孔隙大小、裂隙网络和破碎程度不同,对煤层气富集和运移的影响也不相同。根据煤体的破碎程度,将沁水盆地F 区块3# 煤层煤体结构类型划分为原生结构、过渡结构和碎裂结构,并分析了不同煤体结构的测井响应特征。统计表明:随着煤体破碎程度增加,测井曲线上通常表现为密度与电阻率均降低、井径扩大、声波时差增大。在测井资料定性划分煤体结构的基础上,提出利用阵列声波测井资料计算煤岩脆性指数来定量判识煤体结构。通过实际应用认为,用煤岩脆性指数定量判识煤体结构是可行的,判识结果与实际钻井取心资料符合率较高,能够提高煤体结构研究的精度。

Abstract: An accurate identification of coal structure is one of key issues in coalbed methane(CBM)exploration and development. Different coal structure have different influences on the migration and enrichment of coalbed methane. According to the coal broken degree,the coal structure of No.3 coal bed was divided into primary structure, transition structure and cataclastic structure in F block of Qinshui Basin,and the characteristics of their logging response were analyzed. The results show that the logging curve is usually characterized with lower density and resistivity,and higher borehole diameter and acoustic time as the coal broken degree increases. Based on the qualitative identifying of coal structure by logging data,array acoustic logging data was used to calculate the coal rock brittleness index(BI)quantitatively. The application results show that it is feasible to identify coal structure quantitatively by the coal rock brittleness index,the identification result is consistent with the actual drilling coring data,and it can greatly reduce the error of the qualitative identification.

中图分类号: 

  • P631
[1] 范俊佳,琚宜文,柳少波,等. 不同煤储层条件下煤岩微孔结 构及其对煤层气开发的启示. 煤炭学报,2013,38(3):441-447 . FAN J J,JU Y W,LIU S B,et al. Micropore structure of coals under different reservoir conditions and its implication for coalbed methane development. Journal of China Coal Society, 2013,38(3):441-447 .
[2] 降文萍,张群,姜在炳,等. 构造煤孔隙结构对煤层气产气特 征的影响. 天然气地球科学,2016,27(1):173-179 . JIANG W P,ZHANG Q,JIANG Z B,et al. Effect on CBM drainage characteristics of pore structure of tectonic coal. Natural Gas Geoscience,2016,27(1):173-179 .
[3] LI J Q,LIU D M,YAO Y B,et al. Evaluation of the reservoir permeability of anthracite coals by geophysical logging data. International Journal of Coal Geology,2011,87(2):121-127 .
[4] 康园园,邵先杰,石磊,等. 煤层气开发目标区精选体系与方 法研究. 岩性油气藏,2011,23(1):62-66 . KANGYY,SHAO X J,SHI L,et al. Study on system and method of ranking coalbed methane development perspectives. Lithologic Reservoirs,2011,23(1):62-66 .
[5] 胡奇,王生维,张晨,等. 沁南地区煤体结构对煤层气开发的 影响. 煤炭科学技术,2014,42(8):65-68 . HU Q,WANG S W,ZHANG C,et al. Coal structure affected to coalbed methane development in Qinnan region. Coal Science and Technology,2014,42(8):65-68 .
[6] DASHTIAN H,JAFARI G R,SAHIMI M,et al. Scaling,multifractality, and long-range correlations in well log data of largescale porous media. Physica A:Statistical Mechanics and its Applications,2011,390:2096-2111.
[7] 姚军朋,司马立强,张玉贵. 构造煤地球物理测井定量判识研 究. 煤炭学报,2011,36(增刊1):94-98 . YAO J P,SIMA L Q,ZHANG Y G. Quantitative identification of deformed coals by geophysical logging. Journal of China Coal Society,2011,36(Suppl 1):94-98 .
[8] 陈跃,汤达祯,许浩,等. 基于测井信息的韩城地区煤体结构 的分布规律. 煤炭学报,2013,38(8):1435-1442 . CHEN Y,TANG D Z,XU H,et al. The distribution of coal structure in Hancheng based on well logging data. Journal of China Coal Society,2013,38(8):1435-1442.
[9] 张坤鹏,姜波,李明,等. 新景煤矿3 号煤层煤体结构测井曲 线判识及其分布规律. 煤田地质与勘探,2016,44(1):123-127 . ZHANG K P,JIANG B,LI M,et al. Identification and distribution of structure of seam No.3 in Xinjing Mine on the basis of well logs. Coal Geology & Exploration,2016,44(1):123-127 .
[10] 孟召平,刘珊珊,王保玉,等. 晋城矿区煤体结构及其测井响 应特征研究. 煤炭科学技术,2015,43(2):58-63 . MENG Z P,LIU S S,WANG B Y,et al. Study on feature of coal body structure and logging response in Jincheng mining area. Coal Science & Technology,2015,43(2):58-63 .
[11] CHEN Q,YAO H F,CHANG S L,et al. Coalbody structure classification method based on dual-lateral and RXO crossplot analysis. Journal of Coal Science and Engineering,2013,19 (4):522-529 .
[12] 李伟,要慧芳,刘鸿福,等. 基于显微CT 的不同煤体结构煤 三维孔隙精细表征. 煤炭学报,2014,39(6):1127-1132 . LI W,YAO H F,LIU H F,et al. Advanced characterization of three-dimensional pores in coals with different coal-body structure by micro-CT. Journal of China Coal Society,2014,39(6): 1127-1132 .
[13] 闫霞,李小军,赵辉,等. 煤层气井井间干扰研究及应用. 岩 性油气藏,2015,27(2):126-132 . YAN X,LI X J,ZHAO H,et al. Research on well interference of coalbed methane wells and its application. Lithologic Reservoirs, 2015,27(2):126-132 .
[14] 刘之的,王剑,杨秀春,等. 密度测井扩径影响校正方法在煤 层气储层中的适用性分析. 地球物理学进展,2014,29(5): 2219-2223 . LIU Z D,WANG J,YANG X C,et al. Analyzing on applicability of expanding influence correction method of density logging in the coalbed methane reservoir. Progress in Geophysics, 2014,29(5):2219-2223 .
[15] 许启鲁,黄文辉,杨延绘,等. 构造煤的测井曲线判识——以 柿庄北区块为例. 科学技术与工程,2016,16(3):11-16 . XU Q L,HUANG W H,YANG Y H,et al. Analysis of identifying deformed coal by logging curve in Shizhuang north block, Qinshui Basin,China. Science Technology and Engineering, 2016,16(3):11-16 .
[16] 赵毅,毛志强,孙伟,等. 煤层气储层非常规测井资料评价方 法研究. 测井技术,2011,35(5):441-446 . ZHAO Y,MAO Z Q,SUN W,et al. Evaluation method for unconventional log data of CBM reservoir. Well Logging Technology, 2011,35(5):441-446 .
[17] 刘鹏,乔文孝,车小花,等. 多极子阵列声波测井技术在煤层 气储层评价中的应用. 测井技术,2014,38(3):292-296 . LIU P,QIAO W X,CHE X H,et al. Application of multipole acoustic logging to the evaluation of coalbed methane reservoirs. Well Logging Technology,2014,38(3):292-296 .
[18] 王赟,许小凯,张玉贵. 六种不同变质程度煤的纵横波速度特 征及其与密度的关系. 地球物理学报,2012,55(11):3754-3761 . WANG Y,XU X K,ZHANG Y G. Characteristics of P-wave and S-wave velocities and their relationships with density of six metamorphic kinds of coals. Chinese Journal of Geophysics, 2012,55(11):3754-3761 .
[19] 冯昕鹏,李金付,聂建委,等. 横波速度拟合技术在苏里格气 田的应用. 岩性油气藏,2012,24(6):106-109 . FENG X P,LI J F,NIE J W,et al. Application of shear wave velocity fitting technology in Sulige Gas Field. Lithologic Res ervoirs,2012,24(6):106-109 .
[20] 王成龙,夏宏泉,杨双定. 基于岩石脆性系数的压裂缝高度与 宽度预测方法研究. 测井技术,2013,37(6):676-680 . WANG C L,XIA H Q,YANG S D. On fracture height and width prediction method based rock brittleness coefficient. Well Logging Technology,2013,37(6):676-680 .
[21] 李华阳,周灿灿,李长喜,等. 致密砂岩脆性指数测井评价方 法——以鄂尔多斯盆地陇东地区长7 段致密砂岩储集层为 例. 新疆石油地质,2014,35(5):593-597. LI H Y,ZHOU C C,LI C X,et al. Logging evaluation and application of brittleness index in tight sandstone reservoir—A case study of Chang-7 tight sandstone reservoir in Longdong area of Ordos Basin. Xinjiang Petroleum Geology,2014,35(5): 593-597.
[22] JARVIE D M,HILL R J,RUBLE T E,et al. Uncoventional shale-gas systems:the Mississippian Barnett shale on Northcentral Texas as one model for thermogenic shale-gas assessment. APPG Bulletin,2007,91(4):475-499 .
[23] RICKMAN R,MULLEN M,PETRE E,et al. A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett shale. SPE 115258,2008: 1-11 .
[24] GRIESER B,BRAY J. Identification of production potential in unconventional reservoirs. SPE 106623,2007:1-6 .
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[3] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[4] 熊波, 朱冬雪, 方朝合, 王社教, 杜广林, 薛亚斐, 莫邵元, 辛福东. 基于BP算法的中深层同轴套管换热量预测[J]. 岩性油气藏, 2024, 36(2): 15-22.
[5] 刘亚明, 王丹丹, 田作基, 张志伟, 王童奎, 王朝锋, 阳孝法, 周玉冰. 巴西桑托斯盆地复杂碳酸盐岩油田火成岩发育特征及预测方法[J]. 岩性油气藏, 2023, 35(6): 127-137.
[6] 苏勤, 曾华会, 徐兴荣, 王德英, 孟会杰. 沙漠区地震数据高分辨率处理关键方法及其在尼日尔Agedem地区的应用[J]. 岩性油气藏, 2023, 35(6): 18-28.
[7] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
[8] 王立德, 王小卫, 周辉, 吴杰, 张志强, 王建乐, 王德英, 冯刚. 一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法[J]. 岩性油气藏, 2023, 35(4): 61-69.
[9] 李胜军, 高建虎, 张繁昌, 贺东阳, 桂金咏. 一种基于压缩感知理论的强反射地震信号消减方法[J]. 岩性油气藏, 2023, 35(4): 70-78.
[10] 许鑫, 杨午阳, 张凯, 魏新建, 张向阳, 李海山. 三维初至波旅行时层析速度反演算法优化[J]. 岩性油气藏, 2023, 35(4): 79-89.
[11] 黄军立, 张伟, 刘力辉, 蔡国富, 曾有良, 孟庆友, 刘浩. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏, 2023, 35(2): 103-112.
[12] 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21.
[13] 何玉, 周星, 李少轩, 丁洪波. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69.
[14] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[15] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .