岩性油气藏 ›› 2019, Vol. 31 ›› Issue (5): 8491.doi: 10.12108/yxyqc.20190509
仲鸿儒1, 成育红2, 林孟雄2, 高世臣3, 仲婷婷3
ZHONG Hongru1, CHENG Yuhong2, LIN Mengxiong2, GAO Shichen3, ZHONG Tingting3
摘要: 碳酸盐岩储层受构造、沉积、古地貌等因素的影响,储层岩性复杂多样,基于测井资料开展岩性的识别在储层评价过程中具有重要意义。针对岩性识别方法存在泛化能力差,难以和地质经验相结合等问题,以苏里格气田苏东41-33区块下古碳酸盐岩储层为例,提出一种基于自组织映射(Self-OrganizingMap,SOM)和模糊识别相结合的岩性识别方法。对岩性较为敏感的声波时差、补偿中子、密度等6种测井参数,采用自组织映射以无监督形式挖掘测井参数的关系信息和拓扑结构,并采用模糊识别方法对自组织映射模型进行局部校正。实际应用结果显示:该方法岩性识别正确率比传统模糊识别方法提高了7.3%,为岩性识别提供了新思路。
中图分类号:
[1] 袁照威,段正军,张春雨,等. 基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释. 新疆石油地质,2017,38(1):96-102. YUAN Z W,DUAN Z J,ZHANG C Y,et al. Interpretation of logging lithology in carbonate reservoirs based on Markov Chain probability model. Xinjiang Petroleum Geology,2017, 38(1):96-102. [2] 吴磊,徐怀民,季汉成. 基于交会图和多元统计法的神经网络技术在火山岩识别中的应用. 石油地球物理勘探,2006,41(1):81-86. WU L,XU H M,JI H C. Application of neural network based on crossplot and multivariate statistical method in identification of volcanic rocks. Oil Geophysical Prospecting,2006,41(1):81-86. [3] 马峥,张春雷,高世臣. 主成分分析与模糊识别在岩性识别中的应用. 岩性油气藏,2017,29(5):127-133. MA Z,ZHANG C L,GAO S C. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs,2017,29(5):127-133. [4] MA Y Z. Lithofacies clustering using principal component analysis and neural network:Applications to wireline logs. Mathematical Geosciences,2011,43(4):401-419. [5] WANG G C,CARR T R,JU Y W,et al. Identifying organicrich marcellus shale lithofacies by support vector machine classifier in the Appalachian Basin. Computers & Geosciences, 2014,64(3):52-60. [6] CHANG H C,KOPASKA-MERKEL D C,CHEN H C,et al. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system. Computers & Geosciences,2000,26(5):591-601. [7] 单敬福,陈欣欣,赵忠军,等.利用BP神经网络法对致密砂岩气藏储集层复杂岩性的识别.地球物理学进展,2015,30(3):1257-1263. SHAN J F,CHEN X X,ZHAO Z J,et al. Identification of complex lithology for tight sandstone gas reservoirs sase on BP neural net. Progress in Geophysics,2015,30(3):1257-1263. [8] VILALMANN T.Topology preservation in self-organizing maps. Kohonen Maps,1999,27(2):279-292. [9] FRASER S J,DICKSON B L. A new method for data integration and integrated data interpretation:Self-organizing maps? MILKEREIT B. Proceedings of exploration 07:Fifth decennial international conference on mineral exploration. Torouto:Decennial Mineral Exploration Conference Publisher,2007:907-910. [10] 许少华,何新贵,李盼池. 自组织过程神经网络及其应用研究. 计算机研究与发展,2003,40(11):1612-1615. XU S H,HE X G,LI P C. Research and applications of self-organization process neural networks. Journal of Computer Research and Development,2003,40(11):1612-1615. [11] KOHONEN T. Self-organized formation of topologically correct feature maps. Biological Cybernetics,1982,43(1):59-69. [12] ROY A,MATOS M,MARFURT K J. Automatic seismic facies classification with Kohonen self organizing maps-a tutorial. Geohorizons,2010,1(1):6-14. [13] 韩波,何治亮,任娜娜. 四川盆地东缘龙王庙组碳酸盐岩储层特征及主控因素. 岩性油气藏,2018,30(1):75-85. HAN B,HE Z L,REN N N. Characteristics and main controlling factors of carbonate reservoirs of Longwangmiao Formation in eastern Sichuan Basin. Lithologic Reservoirs,2018,30(1):75-85. [14] 田亮,李佳玲,焦保雷. 塔河油田12区奥陶系油藏溶洞充填机理及挖潜方向. 岩性油气藏,2018,30(3):52-60. TIAN L,LI J L,JIAO B L. Filling mechanism and potential tapping direction of Ordovician karst reservoirs in block-12 of Tahe Oilfield. Lithologic Reservoirs,2018,30(3):52-60. [15] 张䶮,郑晓东,李劲松,等. 基于SOM和PSO的非监督地震相分析技术. 地球物理学报,2015,58(9):3412-3423. ZHANG Y,ZHENG X D,LI J S,et al. Unsupervised seismic facies analysis technology based on SOM and PSO. Chinese Hournal of Geophysics,2015,58(9):3412-3423. [16] 段林娣,张春雷,王利田,等.储层建模新技术、新方法研究:基于模糊系统的储层建模方法.内蒙古石油化工,2007,32(4):76-79. DUAN L D,ZHANG C L,WANG L T,et al. Research on reservoir model ing based on fuzzy system. Inner Mongolia Petrochemical Industry,2007,32(4):76-79. [17] RITTER H,MARTINETZ T,SCHULTEN K,et al. Neural computation and self-organizing maps:an introduction. Boston:Addison-Wesley,1993:243-244. [18] KOSKO B. Fuzzy engineering. Upper Saddle River,NJ:Prentice Hall,1996:35-75. [19] VESANTO J,AHOLA J. Hunting for correlations in data using the self-organizing map//ROCHESTER N Y. Proceedings of the international ICSC congress on Computational Intelligence Methods and Applications(CIMA'99). Switzerland:ICSC Academic Press,1999:279-285. [20] 袁照威. 基于机器学习与多信息融合的致密砂岩储层井震解释方法研究.北京:中国地质大学(北京),2017. YUAN Z W. Interpretation methods of tseight sandstone reservoir with seismic data and welllogs based on machine learning method and multi-information fusion. Beijing:China University of Geosciences(Beijing),2017. |
[1] | 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65. |
[2] | 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135. |
[3] | 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169. |
[4] | 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田FⅠ16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109. |
[5] | 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158. |
[6] | 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158. |
[7] | 叶涛, 牛成民, 王清斌, 高坤顺, 孙哲, 陈安清. 用“成分-结构”分类法识别古潜山变质岩岩性——以渤海海域太古界为例[J]. 岩性油气藏, 2021, 33(6): 156-164. |
[8] | 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128. |
[9] | 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266. |
[10] | 孙予舒, 黄芸, 梁婷, 季汉成, 向鹏飞, 徐新蓉. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J]. 岩性油气藏, 2020, 32(4): 98-106. |
[11] | 马峥, 张春雷, 高世臣. 主成分分析与模糊识别在岩性识别中的应用[J]. 岩性油气藏, 2017, 29(5): 127-133. |
[12] | 张大权,邹妞妞,姜 杨,马崇尧,张顺存,杜社宽 . 火山岩岩性测井识别方法研究——以准噶尔盆地火山岩为例[J]. 岩性油气藏, 2015, 27(1): 108-114. |
[13] | 司马立强,李 清,杨 毅,陈 强 . 用 J 函数法求取碳酸盐岩储层饱和度方法探讨[J]. 岩性油气藏, 2014, 26(6): 106-110. |
[14] | 石战战,庞溯,唐湘蓉,贺振华. 基于匹配追踪算法的碳酸盐岩储层低频伴影识别方法研究[J]. 岩性油气藏, 2014, 26(3): 114-118. |
[15] | 王庆如,李敬功. 碳酸盐岩气藏储量参数测井评价方法[J]. 岩性油气藏, 2013, 25(6): 98-102. |
|