岩性油气藏 ›› 2020, Vol. 32 ›› Issue (6): 164–171.doi: 10.12108/yxyqc.20200616

• 油气田开发 • 上一篇    下一篇

基于混合粒子群算法的煤层气井位优化方法

刘明明1, 王全2, 马收1, 田中政1, 丛颜1   

  1. 1. 华美孚泰油气增产技术服务有限责任公司, 北京 100101;
    2. 石化盈科信息技术有限责任公司, 北京 100007
  • 收稿日期:2019-12-13 修回日期:2020-02-12 出版日期:2020-12-01 发布日期:2020-10-30
  • 第一作者:刘明明(1989-),男,硕士,主要从事油气田增产技术方面的研究工作。地址:(100101)北京市朝阳区北辰西路8号北辰世纪中心A座805室。Email:upc_lmm@163.com。

Well placement optimization of coalbed methane based on hybrid particle swarm optimization algorithm

LIU Mingming1, WANG Quan2, MA Shou1, TIAN Zhongzheng1, CONG Yan1   

  1. 1. SinoFTS Petroleum Services Ltd., Beijing 100101, China;
    2. Petro-CyberWorks Information Technology Co., Ltd., Beijing 100007, China
  • Received:2019-12-13 Revised:2020-02-12 Online:2020-12-01 Published:2020-10-30

摘要: 井位的部署直接关系到煤层气开发的采气速度及经济效益。基于粒子群算法的劣势和模拟退火算法的优势,提出了一种混合粒子群算法,其以净现值为目标函数,单井控制面积和井位为变量,结合油藏数值模拟方法,优选出净现值最大的单井控制面积和井位,并利用matlab编程来实现。结果显示,基于混合粒子群算法的井位优化方法能够快速确定最优井位,计算量较穷举法大幅度降低;沁水盆地煤层气田的最优单井控制面积为0.2 km2;对于最优单井控制面积,混合粒子群算法得到的最优净现值比常规矩形井网的净现值增加12.55%;最优井位分布与含气量、渗透率密切相关,其中渗透率的影响尤为重要,最优井位是含气量与渗透率的最优组合。该研究成果为煤层气开发井位优化提供了新方法。

关键词: 煤层气, 井位优化, 单井控制面积, 混合粒子群算法, 数值模拟, 沁水盆地

Abstract: The well locations directly influence the gas recovery factor and the economic benefit of coalbed methane development projects. Based on the disadvantage of particle swarm optimization and the advantage of simulated anneal algorithm,a hybrid particle swarm optimization algorithm was proposed. This algorithm took the net present value as the objective function,the single well control area and well location as variables,and combined the reservoir numerical simulation method to optimize the single well control area and well location with the largest net present value(NPV),which was realized by matlab programming. The results show that the well location optimization based on hybrid particle swarm optimization algorithm overcomes the disadvantage of the conventional well pattern which is experience-dependent. It needs less amount of computation to determine the optimal well location compared with exhaust algorithm. The optimal single well control area of coalbed gas field in Qinshui Basin is 0.2 km2. For the optimal control area of a single well,the optimal NPV obtained by hybrid particle swarm optimization algorithm is 12.55% higher than that of the conventional rectangular well pattern. The optimal well location is closely related to gas content and permeability,among which the permeability distribution is particularly important,and it is an optimal combination of gas content and permeability. The research results provide a new method for the well location optimization of CBM development.

Key words: coalbed methane, well location optimization, single well control area, hybrid particle swarm optimization algorithm, numerical simulation, Qinshui Basin

中图分类号: 

  • TE32+4
[1] 杨甫, 贺丹, 马东民, 等.低阶煤储层微观孔隙结构多尺度联合表征.岩性油气藏, 2020, 32(3):14-23. YANG F, HE D, MA D M, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir. Lithologic Reservoirs, 2020, 32(3):14-23.
[2] 未志杰, 康晓东, 刘玉洋, 等.煤层气藏全流固耦合数学模型. 岩性油气藏, 2019, 31(2):151-158. WEI Z J, KANG X D, LIU Y Y, et al. A fully coupled fluid flow and geomechanics model for coalbed methane reservoir. Lithologic Reservoirs, 2019, 31(2):151-158.
[3] 艾林, 周明顺, 张杰, 等.基于煤岩脆性指数的煤体结构测井定量判识.岩性油气藏, 2017, 29(2):139-144. AI L, ZHOU M S, ZHANG J, et al. Quantitative identification of coal structure based on coal rock brittleness index by logging data. Lithologic Reservoirs, 2017, 29(2):139-144.
[4] 苏朋辉, 夏朝辉, 刘玲莉, 等.澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式.岩性油气藏, 2019, 31(5):121-128. SU P H, XIA Z H, LIU L L, et al. Main controlling factors of productivity and reasonable development methods of low-rank coalbed methane in block M of Australia. Lithologic Reservoirs, 2019, 31(5):121-128.
[5] 高为, 金军, 易同生, 等.黔北小林华矿区高阶煤层气藏特征及开采技术.岩性油气藏, 2017, 29(5):140-147. GAO W, JIN J, YI T S, et al. Enrichment mechanism and mining technology of high rank coalbed methane in Xiaolinhua coal mine, northern Guizhou. Lithologic Reservoirs, 2017, 29(5):140-147.
[6] 倪小明, 王延斌, 接铭训, 等.晋城矿区西部地质构造与煤层气井网布置关系.煤炭学报, 2007, 32(2):146-149. NI X M, WANG Y B, JIE M X, et al. The relations between geological structure in the western Jincheng diggings and coal-bed methane wells arrangement. Journal of China Coal Society, 2007, 32(2):146-149.
[7] 杨秀春, 叶建平.煤层气开发井网部署与优化方法.中国煤层气, 2008, 5(1):13-17. YANG X C, YE J P. Well pattern optimization design for CBM development. China Coalbed Methane, 2008, 5(1):13-17.
[8] 史进, 吴晓东, 韩国庆, 等.煤层气开发井网优化设计.煤田地质与勘探, 2011, 39(6):20-23. SHI J, WU X D, HAN G Q, et al. Optimization design of CBM well grid pattern. Coal Geology & Exploration, 2011, 39(6):20-23.
[9] 张双斌, 苏现波, 郭红玉, 等.煤层气井排采过程中压裂裂缝导流能力的伤害与控制.煤炭学报, 2014, 39(1):124-128. ZHANG S B, SU X B, GUO H Y, et al. Controlling the damage of conductivity of hydraulic factures during the process of drainage in coalbed methane well. Journal of China Coal Society, 2014, 39(1):124-128.
[10] BECKNER B L, SONG X. Field development planning using simulated annealing:Optimal economic well scheduling and placement. SPE 30650, 1995.
[11] NORRENA K P, DEUTSCH C V. Automatic determination of well placement subject to geostatistical and economic constraints. SPE 78996, 2002.
[12] ONWUNALU J E, DURLOFSKY L J. Application of a particle swarm optimization algorithm for determining optimum well location and type. Computational Geosciences, 2010, 14(1):183-198.
[13] ONWUNALU J E, DURLOFSKY L J. A new well-pattern-optimization procedure for large-scale field development. SPE Journal, 2011, 16(3):594-607.
[14] 姜瑞忠, 刘明明, 徐建春, 等.遗传算法在苏里格气田井位优化中的应用.天然气地球科学, 2014, 25(10):1603-1609. JIANG R Z, LIU M M, XU J C, et al. Application of genetic algorithm for well placement optimization in Sulige gas field. Natural Gas Geoscience, 2014, 25(10):1603-1609.
[15] 姜瑞忠, 杨宜渤.基于新型遗传算法的碳酸盐岩油气藏布井研究.计算机科学, 2018, 45(11 A):584-586. JIANG R Z, YANG Y B. Research on well distribution in carbonate reservoirs based on novel genetic algorithm. Computer Science, 2018, 45(11 A):584-586.
[16] KENNEDY J, EBERHART R. Particle swarm optimization. Proceedings of IEEE international conference on neural networks, 1995, 4(2):1942-1948.
[17] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 1953, 21:1087-1092.
[18] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing. Science, 1983, 42(3):671-680.
[19] BEHNAMIAN J, GHOMI S M T F. Development of a PSO-SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting. Expert Systems with Applications, 2010, 37(2):974-984.
[20] NIKNAM T, AMIRI B, OLAMAEI J, et al. An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. Journal of Zhejiang University(Science A), 2009, 10(4):512-519.
[21] HADIDI A, KAVEH A, AZAR B F, et al. An efficient hybrid algorithm based on particle swarm and simulated annealing for optimal design of space trusses. International Journal of Optimization in Civil Engineering, 2011, 1(3):377-395.
[22] VAN LAARHOVEN P J M, AARTS E H L. Simulated annealing:Theory and applications. Dordrecht:Springer, 1987:7-15.
[23] Al-MUDHAFER W J. A practical economic optimization approach with reservoir flow simulation for infill drilling in a mature oil field. SPE 164612, 2013:1-14.
[24] 张树林, 黄耀琴.净现值法:一种计算经济极限井网密度的新方法.地质科技情报, 2004, 23(1):78-80. ZHANG S L, HUANG Y Q. Net present value method:a new method to calculate economy limit well density. Geological Science and Technology Information, 2004, 23(1):78-80.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[3] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[4] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[5] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[6] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[7] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[8] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[9] 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6): 72-79.
[10] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[11] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[12] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[13] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[14] 未志杰, 康晓东. 煤层气藏强化采收全流固耦合模型[J]. 岩性油气藏, 2021, 33(5): 181-188.
[15] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .