岩性油气藏 ›› 2020, Vol. 32 ›› Issue (6): 164171.doi: 10.12108/yxyqc.20200616
刘明明1, 王全2, 马收1, 田中政1, 丛颜1
LIU Mingming1, WANG Quan2, MA Shou1, TIAN Zhongzheng1, CONG Yan1
摘要: 井位的部署直接关系到煤层气开发的采气速度及经济效益。基于粒子群算法的劣势和模拟退火算法的优势,提出了一种混合粒子群算法,其以净现值为目标函数,单井控制面积和井位为变量,结合油藏数值模拟方法,优选出净现值最大的单井控制面积和井位,并利用matlab编程来实现。结果显示,基于混合粒子群算法的井位优化方法能够快速确定最优井位,计算量较穷举法大幅度降低;沁水盆地煤层气田的最优单井控制面积为0.2 km2;对于最优单井控制面积,混合粒子群算法得到的最优净现值比常规矩形井网的净现值增加12.55%;最优井位分布与含气量、渗透率密切相关,其中渗透率的影响尤为重要,最优井位是含气量与渗透率的最优组合。该研究成果为煤层气开发井位优化提供了新方法。
中图分类号:
[1] 杨甫, 贺丹, 马东民, 等.低阶煤储层微观孔隙结构多尺度联合表征.岩性油气藏, 2020, 32(3):14-23. YANG F, HE D, MA D M, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir. Lithologic Reservoirs, 2020, 32(3):14-23. [2] 未志杰, 康晓东, 刘玉洋, 等.煤层气藏全流固耦合数学模型. 岩性油气藏, 2019, 31(2):151-158. WEI Z J, KANG X D, LIU Y Y, et al. A fully coupled fluid flow and geomechanics model for coalbed methane reservoir. Lithologic Reservoirs, 2019, 31(2):151-158. [3] 艾林, 周明顺, 张杰, 等.基于煤岩脆性指数的煤体结构测井定量判识.岩性油气藏, 2017, 29(2):139-144. AI L, ZHOU M S, ZHANG J, et al. Quantitative identification of coal structure based on coal rock brittleness index by logging data. Lithologic Reservoirs, 2017, 29(2):139-144. [4] 苏朋辉, 夏朝辉, 刘玲莉, 等.澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式.岩性油气藏, 2019, 31(5):121-128. SU P H, XIA Z H, LIU L L, et al. Main controlling factors of productivity and reasonable development methods of low-rank coalbed methane in block M of Australia. Lithologic Reservoirs, 2019, 31(5):121-128. [5] 高为, 金军, 易同生, 等.黔北小林华矿区高阶煤层气藏特征及开采技术.岩性油气藏, 2017, 29(5):140-147. GAO W, JIN J, YI T S, et al. Enrichment mechanism and mining technology of high rank coalbed methane in Xiaolinhua coal mine, northern Guizhou. Lithologic Reservoirs, 2017, 29(5):140-147. [6] 倪小明, 王延斌, 接铭训, 等.晋城矿区西部地质构造与煤层气井网布置关系.煤炭学报, 2007, 32(2):146-149. NI X M, WANG Y B, JIE M X, et al. The relations between geological structure in the western Jincheng diggings and coal-bed methane wells arrangement. Journal of China Coal Society, 2007, 32(2):146-149. [7] 杨秀春, 叶建平.煤层气开发井网部署与优化方法.中国煤层气, 2008, 5(1):13-17. YANG X C, YE J P. Well pattern optimization design for CBM development. China Coalbed Methane, 2008, 5(1):13-17. [8] 史进, 吴晓东, 韩国庆, 等.煤层气开发井网优化设计.煤田地质与勘探, 2011, 39(6):20-23. SHI J, WU X D, HAN G Q, et al. Optimization design of CBM well grid pattern. Coal Geology & Exploration, 2011, 39(6):20-23. [9] 张双斌, 苏现波, 郭红玉, 等.煤层气井排采过程中压裂裂缝导流能力的伤害与控制.煤炭学报, 2014, 39(1):124-128. ZHANG S B, SU X B, GUO H Y, et al. Controlling the damage of conductivity of hydraulic factures during the process of drainage in coalbed methane well. Journal of China Coal Society, 2014, 39(1):124-128. [10] BECKNER B L, SONG X. Field development planning using simulated annealing:Optimal economic well scheduling and placement. SPE 30650, 1995. [11] NORRENA K P, DEUTSCH C V. Automatic determination of well placement subject to geostatistical and economic constraints. SPE 78996, 2002. [12] ONWUNALU J E, DURLOFSKY L J. Application of a particle swarm optimization algorithm for determining optimum well location and type. Computational Geosciences, 2010, 14(1):183-198. [13] ONWUNALU J E, DURLOFSKY L J. A new well-pattern-optimization procedure for large-scale field development. SPE Journal, 2011, 16(3):594-607. [14] 姜瑞忠, 刘明明, 徐建春, 等.遗传算法在苏里格气田井位优化中的应用.天然气地球科学, 2014, 25(10):1603-1609. JIANG R Z, LIU M M, XU J C, et al. Application of genetic algorithm for well placement optimization in Sulige gas field. Natural Gas Geoscience, 2014, 25(10):1603-1609. [15] 姜瑞忠, 杨宜渤.基于新型遗传算法的碳酸盐岩油气藏布井研究.计算机科学, 2018, 45(11 A):584-586. JIANG R Z, YANG Y B. Research on well distribution in carbonate reservoirs based on novel genetic algorithm. Computer Science, 2018, 45(11 A):584-586. [16] KENNEDY J, EBERHART R. Particle swarm optimization. Proceedings of IEEE international conference on neural networks, 1995, 4(2):1942-1948. [17] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 1953, 21:1087-1092. [18] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing. Science, 1983, 42(3):671-680. [19] BEHNAMIAN J, GHOMI S M T F. Development of a PSO-SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting. Expert Systems with Applications, 2010, 37(2):974-984. [20] NIKNAM T, AMIRI B, OLAMAEI J, et al. An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. Journal of Zhejiang University(Science A), 2009, 10(4):512-519. [21] HADIDI A, KAVEH A, AZAR B F, et al. An efficient hybrid algorithm based on particle swarm and simulated annealing for optimal design of space trusses. International Journal of Optimization in Civil Engineering, 2011, 1(3):377-395. [22] VAN LAARHOVEN P J M, AARTS E H L. Simulated annealing:Theory and applications. Dordrecht:Springer, 1987:7-15. [23] Al-MUDHAFER W J. A practical economic optimization approach with reservoir flow simulation for infill drilling in a mature oil field. SPE 164612, 2013:1-14. [24] 张树林, 黄耀琴.净现值法:一种计算经济极限井网密度的新方法.地质科技情报, 2004, 23(1):78-80. ZHANG S L, HUANG Y Q. Net present value method:a new method to calculate economy limit well density. Geological Science and Technology Information, 2004, 23(1):78-80. |
[1] | 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55. |
[2] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[3] | 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108. |
[4] | 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71. |
[5] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[6] | 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22. |
[7] | 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168. |
[8] | 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159. |
[9] | 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6): 72-79. |
[10] | 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141. |
[11] | 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51. |
[12] | 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94. |
[13] | 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188. |
[14] | 未志杰, 康晓东. 煤层气藏强化采收全流固耦合模型[J]. 岩性油气藏, 2021, 33(5): 181-188. |
[15] | 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188. |
|