岩性油气藏 ›› 2018, Vol. 30 ›› Issue (2): 111.doi: 10.12108/yxyqc.20180201
• 论坛与综述 • 下一篇
刘化清1, 苏明军1, 倪长宽1, 洪忠1, 崔向丽1, 胡凯峰1, 李政阳1, 毛俊丽2
LIU Huaqing1, SU Mingjun1, NI Changkuan1, HONG Zhong1, CUI Xiangli1, HU Kaifeng1, LI Zhengyang1, MAO Junli2
摘要: 立足砂泥岩薄互层地质背景下厚度小于λ/4(λ为地震子波波长)的单砂体地震储层预测,按照精细地层划分→砂体平面形态分析→砂体厚度预测的研究流程,提出地震沉积学研究思路。除曾洪流等倡导的地震沉积学研究规范涉及的井-震高精度层序格架、地震岩性分析(地震子波相位调整)、地层切片制作等核心研究内容之外,认为以细分岩性为基础的压实校正及古地貌恢复、邻层干涉压制、井-震联动的地层切片浏览、非线性地层切片等技术可准确预测薄砂体平面形态。在精细地层划分方面,地震同相轴的等时性分析技术有助于优选与地质等时界面吻合的同相轴作为层序界面,而基于精细合成记录制作和时深转换的井-震精细对比,可以实现高级层序界面的识别和追踪解释。薄砂层厚度预测方面,除常用的振幅-厚度分析技术和峰值频率技术之外,认为振幅-频率融合和遗传化神经网络技术等综合地震属性预测方法同样可以实现对薄砂体厚度的半定量或定量预测。该方法对准确刻画薄互层中的单砂体具有指导意义。
中图分类号:
[1] 李艳丽, 楚泽涵, 岳兴举.葡西地区葡萄花油层定量识别与评价方法.测井技术, 2002, 26(5):379-382. LI Y L, CHU Z H, YUE X J. Quantitative identification and evaluation of Putaohua reservoir. Well Logging Technology, 2002, 26(5):379-382. [2] 黄捍东, 张如伟, 魏世平.地震非线性随机反演方法在陆相薄砂岩储层预测中的应用.石油学报, 2009, 30(3):386-390. HUANG H D, ZHANG R W, WEI S P. Research on application of seismic nonlinear random inversion to reservoir prediction in the thin sandstone of continental deposits. Acta Petrolei Sinica, 2009, 30(3):386-390. [3] 侯斌, 陈波, 薄永德, 等.基于地质统计学反演的薄互砂岩储层预测——以高邮凹陷刘五舍次凹为例.复杂油气藏, 2016, 9(4):12-15. HOU B, CHEN B, BO Y D, et al. Prediction of sandstone reservoir with thin interbeds based on geostatistics inversion:Liuwushe sub-depression in Gaoyou Sag is taken as an example. Complex Hydrocarbon Reservoirs, 2016, 9(4):12-15. [4] 李莉.江陵凹陷南斜坡新沟嘴组下段薄互层滩坝砂储层预测技术.海洋地质前沿, 2016, 32(12):46-53. LI L. Prediction technique for interbeded thin reservoir of beach bar facies on southern slope of Jiangling. Marine Geology Frontier, 2016, 32(12):46-53. [5] DUAN X Y, LI Y, TAN H H, et al. Applications of facies-control geostatistical inversion in development stage of oilfield:a case study from Bohai Bay. SEG Technical Program Expanded, 2017:3209-3213. [6] WEI P S, SU M J. Methods for seismic sedimentology research on continental basins. Petroleum Science, 2015, 12(1):67-80. [7] CHOPRA S, XU Y, CASTAGNA J. Thin-bed reflectivity inversion and seismic interpretation. SEG Technical Program Expanded, 2007:1923-1927. [8] COUNTISS M L. Frequency-enhanced imaging of stratigraphically complex, thin-bed reservoirs:a case study from South Marsh Island Block 128 Field. The Leading Edge, 2012, 21(9):826-836. [9] PATON G, NUNEZ J, SUTTON K. Thin beds:Seismic analysis workflows to extract hidden events. SEG Technical Program Expanded, 2011:956-959. [10] PARTYKA G, GRIDLEY J, LOPPEZ J. Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge, 1999, 18(3):353-360. [11] ARTHUR E B, LARRY F, KENNY L. Improving frequency domain thin bed analysis. SEG International Exposition and 74 th Annual Meeting, Denver, Colorado, 2004. [12] ZENG H L. RGB blending of frequency panels:a useful tool for high-resolution 3D stratigraphic imaging. SEG Technical Program Expanded, 2017:2003-2007. [13] ZENG H L, HENTZ T F. High-frequency sequence stratigraphy from seismic sedimentology:Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana. AAPG Bulletin, 2004, 88(2):153-174. [14] 曾洪流.地震沉积学在中国:回顾和展望.沉积学报, 2011, 29(3):417-426. ZENG H L. Seismic sedimentology in China:a review. Acta Sedimentologiea Sinica, 2011, 29(3):417-426. [15] 曾洪流, 朱筱敏, 朱如凯, 等.陆相坳陷型盆地地震沉积学研究规范.石油勘探与开发, 2012, 39(3):275-284. ZENG H L, ZHU X M, ZHU R K, et al. Guidelines for seismic sedimentologic study in non-marine post-rift basins. Petroleum Exploration and Development, 2012, 39(3):275-284. [16] ZENG H L. Predicting geometry and stacking pattern of thin beds by interpreting geomorphology and waveforms using sequential stratal-slices in the wheeler domain. Interpretation, 2015, 3(3):SS49-SS64. [17] SU M J, YUAN C, HONG Z. Building high-resolution sequence framework by jointly using well logging and seismic data. SEG Technical Program Expanded, 2017:1950-1954. [18] ZHONG G F, LI Y L, WU F R, et al. Identification of subtle seismic sequence boundaries by all-reflector tracking method. SEG Technical Program Expanded, 2010:1545-1549. [19] PAUGE T F, LACAZE S, VALDING T. A global approach in seismic interpretation based on cost function minimization. SEG Technical Program Expanded, 2009:2592-2596. [20] 陈启林, 苏明军, 张兆辉.一种地震反射同相轴等时性的确定方法及系统.中国:ZL 2013103495336.2015.12.09. CHEN Q L, SU M J, ZHANG Z H. A method and system for isochronous interface determining on seismic profile. China:ZL 2013103495336.2015.12.09. [21] 赵俊兴, 陈洪德, 时志强. 古地貌恢复技术方法及其研究意义——以鄂尔多斯盆地侏罗纪沉积前古地貌研究为例.成都理工学院学报, 2001, 28(3):260-266. ZHAO J X, CHEN H D, SHI Z Q. The way and implications of rebulding palaeogeomorphology-Taking the research of palaeogeomorphology of the Ordos Basin before Jurassic deposition as example. Journal of Chengdu University of Technology, 2001, 28(3):260-266. [22] 姜正龙, 邓宏文, 林会喜, 等.古地貌恢复方法及应用——以济阳坳陷桩西地区沙二段为例.现代地质, 2009, 23(5):865-871. JIANG Z L, DENG H W, LIN H X, et al. Methods and application of paleo-geomorphologies rebuilding:an example of the second member of Shahejie Formation, Zhuangxi area, Jiyang Depression. Geoscience, 2009, 23(5):865-871. [23] 庞军刚, 杨友运, 李文厚, 等.陆相含油气盆地古地貌恢复研究进展.西安科技大学学报, 2013, 33(4):424-428. PANG J G, YANG Y Y, LI W H, et al. Study development of palaeogeomorphology reconstructions in continental facies hydrocarbon basin. Journal of Xi'an University of Science and Technology, 2013, 33(4):424-428. [24] 尹帅, 赵威, 范子宜.沁水盆地南部地区古构造恢复及其油气意义.岩性油气藏, 2017, 29(6):43-50. YIN S, ZHAO W, FAN Z Y. Paleo-tectonic restoration in southern Qinshui Basin and its hydrocarbon significance. Lithologic Reservoirs, 2017, 29(6):43-50. [25] 卲新军, 刘震, 崔文富.沉积盆地地层古埋深的恢复.石油勘探与开发, 1999, 26(3):33-35. SHAO X J, LIU Z, CUI W F. Restoration of the paleo-burial depth of strata in deposition basin. Petroleum Exploration and Development, 1999, 26(3):33-35. [26] 刘震, 卲新军, 金博, 等, 压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响.现代地质, 2007, 21(1):125-132. LIU Z, SHAO X J, JIN B, et al. Coeffect of depth and burial time on the evolution of porosity for classic rocks during the stage of compaction. Modern Geoscience, 2007, 21(1):125-132. [27] 冯磊, 吴伟.井震结合古地貌恢复方法及应用——以辽河滩海西部地区沙一段为例. 物探化探计算技术, 2012, 34(3):326-329. FENG L, WU W. Methods and application of paleotopography reconstruction by integration well data with seismic data. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(3):326-329. [28] HONG Z, SU M J, LIU H Q, et al. Clastic compaction unit classification based on clay content and integrated compaction recovery using well and seismic data. Petroleum Science, 2016, 13:685-697. [29] HELLAND-HANSEN W, HAMPSON G J. Trajectory analysis:Concepts and applications. Basin Research, 2009, 21:454-483. [30] 康波, 解习龙, 杜学斌, 等.基于滨线轨迹的古水深定量计算新方法——以古近系沙三中段东营三角洲为例.沉积学报, 2012, 30(3):443-449. KANG B, XIE X L, DU X B, et al. A new paleobathymetric approach based on shoreline trajectory:an example from Dongying delta in the third member of Paleogene Shahejie Formation. Acta Sedimentologica Sinica, 2012, 30(3):443-449. [31] 刘化清, 李相博, 陈启林, 等.鄂尔多斯盆地延长组若干石油地质问题.北京:科学出版社, 2013. LIU H Q, LI X B, CHEN Q L, et al. Some petroleum geologicical problems of the Triassic Yanchang Formation, Ordos Basin. Beijing:Science Press, 2013. [32] SU M J, WANG X W, YUAN S Q. Seismic sedimentologic analysis and its application in areas with complex lithology-Case study on Qibei Sag in Huanghua Depression. SEG Technical Program Expanded,2013:1435-1439. [33] ZENG H. Seismic imaging for seismic geomorphology beyond the seabed:potentials and challenges // Davies R J, POSAMENTIERH W, WOOD H W, et al. Seismic geomorphology:Applications to hydrocarbon exploration and production. Geological Society of London, 2007, 277:15-28. [34] 倪长宽, 苏明军.一种非线性等时地层切片的确定方法及系统.中国:ZL 201310346874.8. 2016.12.28. NI C K, SU M J. A method and system for non-linear stratal slicing. China:ZL 201310346874.8. 2016.12.28. [35] NI C K, LIU H Q, SU M J, et al. Thin bed prediction using lowfrequency slicing:Theory and application. CGS/SEG International Geophysical Conference, Qindao, 2017. [36] 孙鲁平, 郑晓东, 首皓, 等.薄层地震峰值频率与厚度关系研究.石油地球物理勘探, 2010, 45(2):254-259. SUN L P, ZHENG X D, SHOU H, et al. The studies on relationship between thin layer seismic peak frequency and its thickness. Oil Geophysical Prospecting, 2010, 45(2):254-259. [37] WIDESS M B. How thin is thin bed? Geophysics, 1973, 38(6):1176-1180. [38] ZENG H L, ZHU X M, ZHU R K, et al. Seismic analysis of very thin beds:which attribute to use? SEG Technical Program Expanded, 2012:1-5. [39] ZHAO W Z, ZOU C N, CHI Y L, et al. Sequence stratigraphy, seismic sedimentology, and lithostratigraphic plays:Upper Cretaceous,Sifangtuozi Area,southwest Songliao Basin,China. AAPG Bulletin, 2011, 95(2):241-265. [40] ZENG H L, MARFURT K J, Recent progress in analysis of seismically thin beds. Interpretation, 2015, 3(3):SS15-SS22. [41] CHUNG H M, DON C. LAVVTON, Frequency characteristics of seismic reflections from thin beds. Canadian Journal of Exploration Geophysics, 1995, 31(1/2):32-37. [42] ROBERTSON J D,NOGAMI H H. Complex seismic trace analysis of thin beds. Geophysics, 1984, 49(49):344-352. [43] ZENG H L. Thin-bed detection and correlation with instantaneous frequency. SEG Technical Program Expanded,2010:1292-1296. [44] ZHOU J, CASTAGNA J,ZHOU J, et al. Seismic thickness delineation using spectral principal component analysis:Theory and a synthetic turbidite example. SEG Technical Program Expanded, 2017:3158-3162. [45] 黄真萍, 王晓华, 王云专. 薄层地震属性参数分析和厚度预测.石油物探, 1997, 36(3):28-38. HUANG Z P, WANG X H, WANG Y Z. Parameter analysis of seismic attributes and thickness prediction for thin bed. Geophysical Prospecting for Petroleum, 1997, 36(3):28-38. [46] 刘力辉, 常德双, 殷学军, 等.人工神经网络在预测储层中的应用.石油地球物理勘探, 1995, 30(增刊1):90-95. LIU L H, CHANG D S, YIN X J, et al. Artificial neural network used in reservoir predicting. Oil Geophysical Prospecting, 1995, 30(Suppl 1):90-95. [47] 丁翠平, 雷安贵.岩性油藏预测技术.石油勘探与开发, 1999, 26(1):6-9. DING C P, LEI A G. Technology for predicting lithological oil pools. Petroleum Exploration and Development.1999, 26(1):6-9. |
[1] | 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24. |
[2] | 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158. |
[3] | 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88. |
[4] | 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58. |
[5] | 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168. |
[6] | 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93. |
[7] | 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59. |
[8] | 张凤奇, 李宜浓, 罗菊兰, 任小锋, 张兰馨, 张芥瑜. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征[J]. 岩性油气藏, 2022, 34(5): 50-62. |
[9] | 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102. |
[10] | 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81. |
[11] | 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3): 142-153. |
[12] | 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53. |
[13] | 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117. |
[14] | 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131. |
[15] | 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154. |
|