岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 46–53.doi: 10.12108/yxyqc.20200505

• 油气地质 • 上一篇    下一篇

渝东南地区海相页岩有机质孔隙发育特征及演化

王朋飞1,2, 金璨3, 臧小鹏1, 田黔宁1, 刘国1, 崔文娟1   

  1. 1. 中国地质调查局 地学文献中心, 北京 100083;
    2. 中国石油大学 油气资源与探测国家重点实验室, 北京 102249;
    3. 中国石化上海海洋油气分公司, 上海 200120
  • 收稿日期:2019-09-25 修回日期:2019-11-28 出版日期:2020-10-01 发布日期:2020-08-08
  • 第一作者:王朋飞(1988-),男,博士,助理研究员,主要从事非常规油气成藏与地质评价及能源信息方面的研究工作。地址:(100083)北京市海淀区学院路29号。Email:wangpengfeicgs@163.com。
  • 基金资助:
    中国地质调查局项目“国际地质调查动态跟踪与分析”(编号:DD20190414)和“南方页岩气基础地质调查工程项目”(编号:12120114046701)联合资助

Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing

WANG Pengfei1,2, JIN Can3, ZANG Xiaopeng1, TIAN Qianning1, LIU Guo1, CUI Wenjuan1   

  1. 1. Geoscience Documentation Center, China Geological Survey, Beijing 100083, China;
    2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Sinopec Shanghai Offshore Petroleum Company, Shanghai 200120, China
  • Received:2019-09-25 Revised:2019-11-28 Online:2020-10-01 Published:2020-08-08

摘要: 页岩气在储层内的有效赋存及渗流由有机质孔隙决定。由此,以渝东南地区下志留统龙马溪组和下寒武统牛蹄塘组高—过成熟度典型富有机质黑色海相页岩为研究对象,使用电子显微镜观察2套页岩层位的有机质孔隙结构。结果表明:龙马溪组页岩有机质孔隙主要发育在焦沥青内部,而固体干酪根内仅发育少量直径较小的有机质孔隙;牛蹄塘组页岩的焦沥青和固体干酪根均不发育有机质孔隙;2套页岩的总有机碳含量、全岩矿物组成及干酪根类型均具有相似特征,但牛蹄塘组页岩的热成熟度要远高于龙马溪组页岩,且已达到变质期,其固体干酪根和焦沥青的物理化学性质均趋近于石墨,导致其有机质内部不发育孔隙。过高的热成熟度不利于页岩中有机质孔隙的保存,所以渝东南地区下寒武统牛蹄塘组高—过成熟度海相页岩气的勘探开发应重点寻找热成熟度低于3.5%的地区。

关键词: 海相页岩, 有机质孔隙, 牛蹄塘组, 龙马溪组, 渝东南地区

Abstract: Organic matter pores determine the occurrence and effective flow of hydrocarbon gas in shale reservoir. The organic matter pore structures of typical organic-rich black marine shale with high-over maturity of Lower Silurian Longmaxi Formation and Lower Cambrian Niutitang Formation in southeastern Chongqing were observed by electron microscope. The results show that there were a large number of organic matter pores in pyrobitumen of Longmaxi shale, with large diameter and strong connectivity, and solid kerogen had a little organic matter pores,while no organic matter pore was developed in pyrobitumen and solid kerogen of Niutitang shale. The two sets of shale have similar characteristics in total organic carbon content,whole rock mineral composition and kerogen type,but the thermal maturity of Niutitang shale is much higher than that of Longmaxi shale, and it has reached the metamorphism stage. The physical and chemical properties of solid kerogen and pyrobitumen tend to be similar to that of graphite, resulting in no pores developed in the organic matter. High thermal maturity is not conducive to the preservation of organic pores in shale, so the exploration and development of highover maturity marine shale gas of Lower Cambrian Niutitang Formation in southeastern Chongqing should focus on the area with thermal maturity less than 3.5%.

Key words: marine shale, organic matter pore, Niutitang Formation, Longmaxi Formation, southeastern Chongqing

中图分类号: 

  • TE122.2
[1] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system,Marcellus Formation(Devonian), Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200.
[2] 张廷山, 何映颉, 杨洋, 等.有机质纳米孔隙吸附页岩气的分子模拟.天然气地球科学, 2017, 28(1):146-155. ZHANG T S, HE Y J, YANG Y, et al. Characteristics and mechanisms of the micro-holes in the Early Palaeozoic marine shale, southern Sichuan Basin. Acta Geologica Sinica, 2017, 28(1):146-155.
[3] JIAO K, YAO S P, LIU C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing:an example from the Lower Silurian Longmaxi shale, upper Yangtze region, China. International Journal of Coal Geology, 2014, 128:1-11.
[4] JI W M, SONG Y, RUI Z H, et al. Pore characterization of isolated organic matter from high matured gas shale reservoir. International Journal of Coal Geology, 2017, 174:31-40.
[5] WANG P F, JIANG Z X, JI W M, et al. Heterogeneity of intergranular,intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China:Evidence from SEM digital images and fractal and multifractal geometries. Marine and Petroleum Geology, 2016, 72:122-138.
[6] MA Y, ZHONG N N, LI D H, et al. Organic matter/clay mineral intergranular pores in the Lower Cambrian Lujiaping Shale in the north-eastern part of the upper Yangtze area, China:a possible microscopic mechanism for gas preservation. International Journal of Coal Geology, 2015, 137:38-54.
[7] 王香增, 张丽霞, 雷裕红, 等.低熟湖相页岩内运移固体有机质和有机质孔特征:以鄂尔多斯盆地东南部延长组长7油层组页岩为例.石油学报, 2018, 39(2):141-151. WANG X Z, ZHANG L X, LEI Y H, et al. Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:a case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation, southeastern Ordos Basin. Acta Petrolei Sinica, 2018, 39(2):141-151.
[8] 王玉满, 李新景, 陈波, 等.海相页岩有机质炭化的热成熟度下限及勘探风险.石油勘探与开发, 2018, 45(3):385-395. WANG Y M, LI X J, CHEN B, et al. Lower limit of thermal maturity for the carbonification of organic matters in marine shales and its exploration risk. Petroleum Exploration and Development, 2018, 45(3):385-395.
[9] 刘忠宝, 冯动军, 高波, 等.上扬子地区下寒武统高演化页岩微观孔隙特征.天然气地球科学, 2017, 28(7):1096-1107. LIU Z B, FENG D J, GAO B, et al. Micropore characteristics of high thermal evolution shale in the Lower Cambrian series in Upper Yangtze area. Natural Gas Geoscience, 2017, 28(7):1096-1107.
[10] 郭旭升, 胡东风, 魏志红, 等.涪陵页岩气田的发现与勘探认识.中国石油勘探, 2016, 21(3):24-37. GUO X S, HU D F, WEI Z H, et al. Discovery and exploration of Fuling shale gas field. China Petroleum Exploration, 2016, 21(3):24-37.
[11] 赵建华, 金之钧, 金振奎, 等.岩石学方法区分页岩中有机质类型.石油实验地质, 2016, 38(4):514-520. ZHAO J H, JIN Z J, JIN Z K, et al. Petrographic methods to distinguish organic matter type in shale. Petroleum Geology & Experiment, 2016, 38(4):514-520.
[12] LOUCKS R G, REED R M. Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks. Gulf Coast Association of Geological Societies Journal, 2014, 3:51-60.
[13] 陈相霖, 郭天旭, 石砥石, 等.陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力.岩性油气藏, 2019, 31(5):52-60. CHEN X L, GUO T X, SHI D S, et al. Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi. Lithologic Reservoirs, 2019, 31(5):52-60.
[14] 拜文华, 王强, 孙莎莎, 等.五峰组-龙马溪组页岩地化特征及沉积环境:以四川盆地西南缘为例. 中国矿业大学学报, 2019, 48(6):1276-1289. BAI W H, WANG Q, SUN S S, et al. Geochemical characteristics and sedimentary environment of the Wufeng-Longmaxi shales:a case study from southwestern margin of the Sichuan Basin. Journal of China University of Mining & Technology, 2019, 48(6):1276-1289.
[15] 丁江辉, 张金川, 杨超, 等.页岩有机孔成因演化及影响因素探讨.西南石油大学学报(自然科学版), 2019, 41(2):33-44. DING J H, ZHANG J C, YANG C, et al. Formation evolution and influencing factors of organic pores in shale. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(2):33-44.
[16] 张焱林, 段轲, 刘早学, 等.鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素.石油实验地质, 2019, 41(5):691-698. ZHANG Y L, DUAN K, LIU Z X, et al. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei. Petroleum Geology & Experiment, 2019, 41(5):691-698.
[17] 张建坤, 何生, 颜新林, 等.页岩纳米级孔隙结构特征及热成熟演化.中国石油大学学报(自然科学版), 2017, 41(1):11-24. ZHANG J K, HE S, YAN X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(1):11-24.
[18] 王朋飞, 姜振学, 杨彩虹, 等.重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征.岩性油气藏, 2019, 31(3):27-36. WANG P F, JIANG Z X, YANG C H, et al. Organic pore development characteristics of Longmaxi and Niutitang shales in the periphery of Chongqing. Lithologic Reservoirs, 2019, 31(3):27-36.
[19] 王朋飞, 姜振学, 韩波, 等.中国南方下寒武统牛蹄塘组页岩气高效勘探开发储层地质参数.石油学报, 2018, 39(2):152-162. WANG P F, JIANG Z X, HAN B, et al. Reservoir geological parameters for efficient exploration and development of Lower Cambrian Niutitang Formation shale gas in South China. Acta Petrolei Sinica, 2018, 39(2):152-162.
[20] 马勇, 钟宁宁, 程礼军, 等.渝东南两套富有机质页岩的孔隙结构特征:来自FIB-SEM的新启示. 石油实验地质, 2015, 37(1):109-116. MA Y, ZHONG N N, CHENG L J, et al. Pore structure of two organic-rich shales in southeastern Chongqing area:Insight from focused ion beam scanning electron microscope(FIB-SEM). Petroleum Geology & Experiment, 2015, 37(1):109-116.
[21] 王朋飞, 吕鹏, 姜振学, 等.中国海陆相页岩有机质孔隙发育特征对比:基于聚焦离子束氦离子显微镜(FIB-HIM)技术. 石油实验地质, 2018, 40(5):739-748. WANG P F, LYU P, JIANG Z X, et al. Comparison of organic matter pores of marine and continental facies shale in China:based on focused ion beam helium ion microscopy(FIB-HIM). Petroleum Geology & Experiment, 2018, 40(5):739-748.
[1] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[2] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[3] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[4] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[5] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[6] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[7] 梁小聪, 牛杏, 胡明毅, 黎洋, 胡忠贵, 蔡全升. 湘鄂西下寒武统牛蹄塘组黑色页岩发育特征及沉积环境[J]. 岩性油气藏, 2023, 35(4): 102-114.
[8] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
[9] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[10] 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
[11] 王登, 周豹, 冷双梁, 温雅茹, 刘海, 张小波, 余江浩, 陈威. 鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义[J]. 岩性油气藏, 2022, 34(1): 52-62.
[12] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[13] 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144.
[14] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21.
[15] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .