岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 93–101.doi: 10.12108/yxyqc.20200510

• 油气地质 • 上一篇    下一篇

特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例

黄杰1, 杜玉洪1, 王红梅1, 郭佳1, 单晓琨1, 苗雪1, 钟新宇2, 朱玉双2   

  1. 1. 中国石油华北油田分公司 勘探开发研究院, 河北 任丘 062552;
    2. 西北大学 大陆动力学国家重点实验室/地质学系, 西安 710069
  • 收稿日期:2020-04-07 修回日期:2020-05-08 出版日期:2020-10-01 发布日期:2020-08-08
  • 第一作者:黄杰(1964-),男,高级工程师,主要从事油田地质开发生产方面的科研工作。地址:(062552)河北省任丘市建设中路华北油田勘探开发研究院。Email:yjy_hjie@petrochina.com.cn。
  • 通信作者: 钟新宇(1990-),男,西北大学在读博士研究生,研究方向为油气田地质与开发。Email:zhongxinyu1990@sina.com。
  • 基金资助:
    中国石油重大科技专项“华北油田持续有效稳产勘探开发关键技术研究与应用”(编号:2017E-15)资助

Characteristics of micro pore structure and movable fluid of extra-low permeability reservoir: a case study of lower Et1 reservoir in A'er Sag,Erlian Basin

UANG Jie1, DU Yuhong1, WANG Hongmei1, GUO Jia1, SHAN Xiaokun1, MIAO Xue1, ZHONG Xinyu2, ZHU Yushuang2   

  1. 1. Research Institute of Exploration and Development, PetroChina Huabei Oilfield Company, Renqiu 062552, Hebei, China;
    2. State Key Laboratory of Continental Dynamics/Department of Geology, Northwest University, Xi'an 710069, China
  • Received:2020-04-07 Revised:2020-05-08 Online:2020-10-01 Published:2020-08-08

摘要: 为了明确二连盆地阿尔凹陷腾格尔组腾一下段储层微观孔隙结构和可动流体赋存特征,开展了扫描电镜、铸体薄片、X射线衍射、高压压汞、恒速压汞和核磁共振等实验研究。结果表明:①腾一下段储层微观孔隙结构分为3种类型,不同孔隙结构具有不同的可动流体赋存特征。②Ⅰ类大孔喉结构,孔喉组合主要为粒间孔-孔隙缩小型喉道和粒间孔-缩颈型喉道,喉道半径大,孔喉半径比小,核磁共振T2谱主要为左低右高双峰型,可动流体饱和度高;Ⅱ类孔隙结构,主要为粒间孔-片状喉道组合与溶蚀孔-片状喉道组合,T2谱主要为左高右低双峰型,可动流体饱和度中等;Ⅲ类孔隙结构,主要为粒间孔-片状喉道组合、溶蚀孔-片状喉道组合和晶间孔-管束状喉道组合,喉道半径小,T2谱为左单峰型,可动流体饱和度低。③储层物性、微观孔隙结构、黏土矿物含量对可动流体赋存具有重要影响,其中喉道特征是影响可动流体赋存的最主要因素,喉道半径越大,大喉道越多,可动流体饱和度越高。该研究成果对阿尔凹陷腾一下段储层的高效开发具有指导意义。

关键词: 微观孔隙结构, 可动流体, 核磁共振, 腾格尔组, 二连盆地

Abstract: In order to make clear the micro pore structure and the occurrence characteristics of movable fluid of the lower Et 1 reservoir in A'er Sag,Erlian Basin,the experimental studies such as SEM,casting slice,X-ray diffraction,high pressure mercury injection,constant velocity mercury injection and NMR were carried out. The results show that:(1)There are three types of micro pore structure of the lower Et1 reservoir,and different pore structures have different characteristics of occurrence of movable fluid.(2) The pore structure of type Ⅰis mainly composed of intergranular pore-pore shrinking throat and intergranular pore-necking throat,with large throat radius and small pore throat radius ratio. Its T2 spectrum of NMR is mainly left low right high bimodal type,and movable fluid saturation is high. The pore structure of type Ⅱ is mainly composed of intergranular pore-flaky throat and dissolved pore-flaky throat,and its T2 spectrum is mainly left high right low bimodal type,with medium movable fluid saturation. The pore structure of type Ⅲ is mainly composed of intergranular pore-flaky throat combination,dissolved pore-flaky throat combination and intercrystalline pore-bundle throat combination. The throat radius of type Ⅲ is small,with T2 spectrum of left single peak type and low movable fluid saturation.(3)The physical properties,micro pore structure and clay mineral content of the reservoir have an important influence on the occurrence of movable fluid. The characteristics of throat are the main factors affecting the occurrence of movable fluid. The larger the throat radius is,the more the large throat is,the higher the saturation of movable fluid is. The research results have guiding significance for the high-efficiency development of lower Et1 reservoir in A'er Sag.

Key words: micro pore structure, movable fluid, NMR, Tenggeer Formation, Erlian Basin

中图分类号: 

  • TE122.2+3
[1] 赵贤正, 史原鹏, 降栓奇, 等.二连盆地阿尔凹陷科学、快速、高效勘探实践和认识.中国石油勘探, 2010, 15(1):1-5. ZHAO X Z, SHI Y P, JIANG S Q, et al. Scientific, fast, and efficient exploration in Aer Sag of Erlian Basin. China Petroleum Exploration, 2010, 15(1):1-5.
[2] 张久强, 张娥, 梁官忠, 等.二连盆地阿尔凹陷快速评价成效与启示.中国石油勘探, 2013, 18(6):13-17. ZHANG J Q, ZHANG E, LIANG G Z, et al. Rapid assessment effect and its enlightenment in Aer Sag,Erlian Basin. China Petroleum Exploration, 2013, 18(6):13-17.
[3] 张浩.阿尔凹陷腾一段储层微观孔隙结构与渗流特征研究. 西安:西北大学, 2017. ZHANG H. Research of micro-pore structure and seepage characteristics of Et 1 in A'er Sag of Erlian Basin. Xi'an:Northwest University, 2017.
[4] 孟庆春, 王红梅, 闫爱华, 等.低渗透砂砾岩储层不同孔隙类型下的水驱油特征:以二连盆地阿尔凹陷腾一下段储层为例.西北大学学报(自然科学版), 2018, 48(6):850-856. MENG Q C, WANG H M, YAN A H, et al. Characteristics of water flooding under different porosity types in low permeability sandstone and conglomerate reservoirs:a case of Et1 in A'er Sag of Erlian Basin. Journal of Northwest University(Natural Science Edition), 2018, 48(6):850-856.
[5] ALIAKBARDOUST E, RAHIMPOUR B H. Effects of pore geometry and rock properties on water saturation of a carbonate reservoir. Journal of Petroleum Science and Engineering, 2013, 112:296-309.
[6] DESBOIS G, URAI J L, KUKLA P A, et al. High-resolution 3 D fabric and porosity model in a tight gas sandstone reservoir:a new approach to investigate microstructures from mm-to nmscale combing argon beam cross sectioning and SEM imaging. Journal of Petroleum Science and Engineering, 2011, 78:243-257.
[7] GAO H, LI H A. Pore structure characterization,permeability evaluation and enhanced gas recovery techniques of tight gas sandstones. Journal of Natural Gas Science and Engineering, 2016, 28:536-547.
[8] 邓浩阳, 司马立强, 吴玟, 等.致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例. 岩性油气藏, 2018, 30(6):76-82. DENG H Y, SIMA L Q, WU W, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs:a case of Penglaizhen Formation and Shaximiao Formation in Western Sichuan Depression. Lithologic Reservoirs, 2018, 30(6):76-82.
[9] LI W, LU S, XUE H, et al. Microscopic pore structure in shale reservoir in the argillaceous dolomite from the Jianghan Basin. Fuel, 2016, 181:1041-1049.
[10] 公言杰, 柳少波, 朱如凯, 等.致密油流动孔隙度下限:高压压汞技术在松辽盆地南部白垩系泉四段的应用.石油勘探与开发, 2015, 42(5):681-688. GONG Y J, LIU S B, ZHU R K, et al. Low limit of tight oil flowing porosity:Application of high-pressure mercury intrusion in the fourth member of Cretaceous Quantou Formation in southern Songliao Basin, NE China. Petroleum Exploration and Development, 2015, 42(5):681-688.
[11] ZHANG F, JIANG Z, SUN W, et al. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance,high pressure mercury injection and constant-rate mercury injection penetration test. Marine and Petroleum Geology, 2019, 109:208-222.
[12] 赵习森, 党海龙, 庞振宇, 等.特低渗储层不同孔隙组合类型的微观孔隙结构及渗流特征:以甘谷驿油田唐157井区长6储层为例.岩性油气藏, 2017, 29(6):8-14. ZHAO X S, DANG H L, PANG Z Y, et al. Microscopic pore structure and seepage characteristics of different pore assemblage types in ultra-low permeability reservoir:a case of Chang 6 reservoir in Tang 157 well area, Ganguyi Oilfield. Lithologic Reservoirs, 2017, 29(6):8-14.
[13] LAI J, WANG G, FAN Z, et al. Insight into the pore structure of tight sandstones using NMR and HPMI measurements. Energy Fuel, 2016, 30:10200-10214.
[14] XI K, CAO Y, HAILE B G, et al. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin,China. Marine and Petroleum Geology, 2016, 76:1-15.
[15] 高辉, 孙卫, 田育红, 等.核磁共振技术在特低渗砂岩微观孔隙结构评价中的应用. 地球物理学进展, 2011, 26(1):294-299. GAO H, SUN W, TIAN Y H, et al. Application of NMR technique in evaluation of micro pore structure in extra-low permeability sandstone. Progress in Geophysics, 2011, 26(1):294-299.
[16] LI S, TANG D, XU H, et al. Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography. Computers & Geosciences, 2012, 48:220-227.
[17] 公言杰, 柳少波, 赵孟军, 等.核磁共振与高压压汞实验联合表征致密油储层微观孔喉分布特征.石油实验地质, 2016, 38(3):389-394. GONG Y J, LIU S B, ZHAO M J, et al. Characterization of micro pore throat radius distribution in tight oil reservoirs by NMR and high pressure mercury injection. Petroleum Geology & Experiment, 2016, 38(3):389-394.
[18] 明红霞, 孙卫, 张龙龙, 等.致密砂岩气藏孔隙结构对物性及可动流体赋存特征的影响:以苏里格气田东部和东南部盒8段储层为例. 中南大学学报(自然科学版), 2015, 46(12):4556-4567. MING H X, SUN W, ZHANG L L, et al. Impact of pore structure on physical property and occurrence characteristics of moving fluid of tight sandstone reservoir:Taking He 8 reservoir in the east and southeast of Sulige gas field as an example. Journal of Central South University(Science and Technology), 2015, 46(12):4556-4567.
[19] 李闽, 王浩, 陈猛.致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149.
[20] WANG R, SHI W, XIE X, et al. Clay mineral content, type, and their effects on pore throat structure and reservoir properties:Insight from the Permian tight sandstones in the Hangjinqi area, north Ordos Basin,China. Marine and Petroleum Geology, 2020, 115:104281.
[21] 任大忠, 周兆华, 梁睿翔, 等.致密砂岩气藏黏土矿物特征及其对储层性质的影响:以鄂尔多斯盆地苏里格气田为例.岩性油气藏, 2019, 31(4):42-53. REN D Z, ZHOU Z H, LIANG R X, et al. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir:a case from Sulige Gas Field,Ordos Basin. Lithologic Reservoirs, 2019, 31(4):42-53.
[22] 淡伟宁.二连盆地阿尔凹陷石油地质综合研究.荆州:长江大学, 2013. DAN W N. Research on petroleum geologic of Aer Sag in Erlian Basin. Jingzhou:Yangtze University, 2013.
[23] 姚威, 吴冲龙.二连盆地阿尔凹陷腾一上段湖底扇沉积特征及油气地质意义.石油实验地质, 2015, 37(6):737-741. YAO W, WU C L. Sedimentary characteristics and petroleum geology of sublacustrine fan of the upper section of the first member of the Tenger Formation in the Aer Sag of the Erlian Basin. Petroleum Geology & Experiment, 2015, 37(6):737-741.
[24] 李道品. 低渗透油田开发决策论. 北京:石油工业出版社, 2016:6-14. LI D P. Decision-making on efficient development of low permeability oilfields. Beijing:Petroleum Industry Press, 2016:6-14.
[25] 柳娜, 周兆华, 任大忠, 等.致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例.岩性油气藏, 2019, 31(6):14-25. LIU N, ZHOU Z H, REN D Z, et al. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir:a case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige Gas Field. Lithologic Reservoirs, 2019, 31(6):14-25.
[26] 王学武, 杨正明, 李海波, 等.核磁共振研究低渗透储层孔隙结构方法. 西南石油大学学报(自然科学版), 2010, 32(2):69-72. WANG X W, YANG Z M, LI H B, et al. Experimental study on pore structure of low permeability core with NMR spectra. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(2):69-72.
[27] 时建超, 屈雪峰, 雷启鸿, 等.致密油储层可动流体分布特征及主控因素分析:以鄂尔多斯盆地长7储层为例.天然气地球科学, 2016, 27(5):827-834. SHI J C, QU X F, LEI Q H, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir:a case study of Chang 7 reservoir in Ordos Basin. Natural Gas Geoscience, 2016, 27(5):827-834.
[1] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[2] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[3] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[4] 司马立强, 马骏, 刘俊丰, 杨会洁, 王亮, 赵宁. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1-10.
[5] 夏青松, 陆江, 杨鹏, 张昆, 杨朝屹, 聂俊杰, 朱云舫, 李立芳. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144.
[6] 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59.
[7] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102.
[8] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[9] 毛锐, 牟立伟, 王刚, 樊海涛. 基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例[J]. 岩性油气藏, 2021, 33(5): 140-147.
[10] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[11] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[12] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[13] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[14] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[15] 杨甫, 贺丹, 马东民, 段中会, 田涛, 付德亮. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .