岩性油气藏 ›› 2022, Vol. 34 ›› Issue (2): 66–74.doi: 10.12108/yxyqc.20220206

• 地质勘探 • 上一篇    下一篇

柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造

赵思思1, 李建明1,2, 柳金城3, 李积永3, 崔俊3   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 长江大学 非常规油气省部共建协同创新中心, 武汉 430100;
    3. 中国石油青海油田分公司 勘探开发研究院, 甘肃 敦煌 736202
  • 收稿日期:2021-10-08 修回日期:2021-12-20 出版日期:2022-03-01 发布日期:2022-03-14
  • 第一作者:赵思思(1996-),女,长江大学在读硕士研究生,研究方向为沉积学。地址:(430100)湖北省武汉市蔡甸区大学路111号。Email:2339380351@qq.com
  • 通信作者: 李建明(1962-),男,硕士,教授,主要从事沉积学及储层地质学方面的研究工作。Email:ljm@yangtzeu.edu.cn。
  • 基金资助:
    中国石油天然气股份有限公司科技重大专项“柴达木盆地建设高原大油气田勘探开发关键技术研究与应用”(编号:2016E-01)资助

Thermochemical sulfate reduction(TSR) and reservoir reformation of the upper Paleogene Xiaganchaigou Formation in Yingxi area, Qaidam Basin

ZHAO Sisi1, LI Jianming1,2, LIU Jincheng3, LI Jiyong3, CUI Jun3   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University(Ministry of Education & Hubei Province), Wuhan 430100, China;
    3. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2021-10-08 Revised:2021-12-20 Online:2022-03-01 Published:2022-03-14

摘要: 硫酸盐热化学还原反应(TSR)作为溶蚀作用的一种重要机制在储层研究中具有重要意义。通过岩心观察、薄片鉴定、扫描电镜、测井等资料的分析,研究了柴达木盆地英西地区下干柴沟组上段TSR特征及其对储层的改造作用。研究结果表明:①TSR反应物主要为烃类与硫酸盐岩,生成物为高含量的H2S,CO2及蚀变烃类、方解石、单质硫、黄铁矿、含硫有机物等,反应起始温度为100~140℃,对应英西地区地层深度为3 113~4 536 m。②英西地区下干柴沟组上段TSR造成了碳酸盐岩孔缝充填物种类繁多,主要包括晶粒状和块状黄铁矿、单质硫及沥青等蚀变矿物,含硫矿物的δ34S值偏大;天然气烃组分具有甲烷含量高、重烃含量低的特征,干燥系数偏大,碳同位素δ13C1值和δ13C2值较大,并且常见H 2S及相对较高含量的CO2等TSR生成物,地层水盐度降低。③TSR相关流体对碳酸盐岩储层进行了改造,埋藏溶蚀作用发育,形成了不同规模的孔洞系统,平均增孔率可达3.5%,在一定程度上优化了储层物性。

关键词: 硫酸盐热化学还原反应(TSR), 溶蚀孔洞, 储层改造, 下干柴沟组上段, 古近系, 英西地区, 柴达木盆地

Abstract: As an important mechanism of dissolution, thermochemical sulfate reduction(TSR) is of great significance in reservoir research. Through the analysis of core observation, thin section identification, scanning electron microscope and logging data, the TSR characteristics and its effect on reservoir reformation of the upper member of Xiaganchaigou Formation in Yingxi area of Qaidam Basin were studied. The results show that:(1) The reactants of TSR are mainly hydrocarbons and sulfate rocks, and the products are high-content H2S, CO, altered hydrocarbons, calcite, elemental sulfur, pyrite, sulfur-containing organic matter. The initial reaction temperature is 100-140℃, corresponding to the formation depth of 3 113-4 536 m in Yingxi area.(2) TSR of the upper member of Xiaganchaigou Formation in Yingxi area resulted that carbonate pores and fractures were filled with modified minerals such as granular and massive pyrite, elemental sulfur and asphalt. The δ34S value of sulfurbearing minerals is relatively heavy. The hydrocarbon components of natural gas are characterized by high methane content and low heavy hydrocarbon content, and the dryness coefficient is larger. The carbon isotope δ13 C1 and δ13 C2 values are larger, and the TSR products such as H2S and relatively high content of CO2 are common. The salinity of formation water is low.(3) TSR related fluids reformed carbonate reservoir, and burial dissolution developed, forming pore systems of different sizes, with an average pore increase rate of 3.5%, which optimized reservoir physical properties.

Key words: thermochemical sulfate reduction(TSR), dissolved pore and vug, reservoir reformation, upper Xiaganchaigou Formation, Paleogene, Yingxi area, Qaidam Basin

中图分类号: 

  • TE122.2
[1] 蔡春芳, 李宏涛.沉积盆地热化学硫酸盐还原作用评述[J].地球科学进展, 2005, 20(10):1100-1105. CAI Chunfang, LI Hongtao.Thermochemical sulfate reduction in sedimentary basins:A review[J]. Advances in Earth Science, 2005, 20(10):1100-1105.
[2] 丁康乐, 李术元, 岳长涛, 等.硫酸盐热化学还原反应的研究进展[J].石油大学学报(自然科学版), 2005, 29(1):150-155. DING Kangle, LI Shuyuan, YUE Changtao, et al. Review of thermochemical sulfate reduction[J]. Journal of the University of Petroleum, China(Edition of Natural Sciences), 2005, 29(1):150-155.
[3] WORDEN R H, SMALLEY P C. H2S-producing reactions in deep carbonate gas reservoirs:Khuff Formation, Abu Dhabi[J]. Chemical Geology, 1996, 133(1/2/3/4):157-171.
[4] CROSS M M, MANNING D A C, BOTTRELL S H, et al. Thermochemical sulphate reduction(TSR):Experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs[J]. Organic Geochemistry, 2004, 35(4):393-404.
[5] AMRANI A, DEEV A, SESSIONS A L, et al. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2012, 84:152-164.
[6] KING H E, WALERS C C, HORN W C, et al. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney-La Barge production complex[J]. Geochimica et Cosmochimica Acta, 2014, 134:210-220.
[7] GVIRTZMAN Z, SAID-AHMAD W, ELLIS G S, et al. Compound-specific sulfur isotope analysis of thiadiamondoids of oils from the Smackover Formation, USA[J]. Geochimica et Cosmochimica Acta, 2015, 167:144-161.
[8] MORAD S, AL-AASM I S, NADER F H, et al. Impact of diagenesis on the spatial and temporal distribution of reservoir quality in the Jurassic Arab D and C members, offshore Abu Dhabi Oilfield, United Arab Emirates[J]. GeoArabia, 2012, 17 (3):17-56.
[9] JIANG Lei, WORDEN R H, YANG Changbing. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 2018, 223:127-140.
[10] 蔡春芳, 邬光辉, 李开开, 等.塔中地区古生界热化学硫酸盐还原作用与原油中硫的成因[J].矿物岩石地球化学通报, 2007, 26(1):44-48. CAI Chunfang, WU Guanghui, LI Kaikai, et al. Thermochemical sulfate reduction and origin of sulfur in crude oils in Paleozoic carbonate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1):44-48.
[11] 丁康乐, 李术元, 岳长涛, 等.原油中有机硫化物成因的硫酸盐热化学还原反应模拟研究[J].燃料化学学报, 2008, 36(1):48-54. DING Kangle, LI Shuyuan, YUE Changtao, et al. A simulation on the formation of organic sulfur compounds in petroleum from thermochemical sulfate reduction[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1):48-54.
[12] 李术元, 丁康乐, 岳长涛, 等.含水条件下正己烷与硫酸镁热化学还原反应体系模拟[J].中国石油大学学报(自然科学版), 2009, 33(1):120-126. LI Shuyuan, DING Kangle, YUE Changtao, et al. Simulation experiments on TSR system of n-hexane and magnesium sulphate in presence of water[J]. Journal of China University of Petroleum(Edition of Natural Sciences), 2009, 33(1):120-126.
[13] 张永翰, 岳长涛, 李术元, 等.原油与硫酸盐的热化学硫酸盐还原反应模拟实验及动力学研究[J].沉积学报, 2011, 29(5):994-1001. ZHANG Yonghan, YUE Changtao, LI Shuyuan, et al. Thermal simulation experiments and kinetics on the system of crude oil and magnesium sulfate[J]. Acta Sedimentologica Sinica, 2011, 29(5):994-1001.
[14] 罗厚勇, 刘文汇, 王万春, 等.四川盆地彭水地区五峰组黑色页岩中硫酸盐热化学还原反应矿物学研究[J].矿物岩石地球化学通报, 2015, 34(2):330-333. LUO Houyong, LIU Wenhui, WANG Wanchun, et al. Discovery of the mineralogical evidence of thermochemical sulfate reduction in black shale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):330-333.
[15] 朱光有, 张水昌, 梁英波, 等.硫酸盐热化学还原反应对烃类的蚀变作用[J].石油学报, 2005, 26(5):52-56. ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Alteration of thermochemical sulfate reduction to hydrocarbons[J]. Acta Petrolei Sinica, 2005, 26(5):52-56.
[16] 王广利, 李宁熙, 高波, 等.麻江奥陶系古油藏中的硫酸盐热化学还原反应:来自分子标志物的证据[J].科学通报, 2013, 58(33):3450-3457. WANG Guangli, LI Ningxi, GAO Bo, et al. Thermochemical sulfate reduction in fossil Ordovician deposits of the Majiang area:Evidence from molecular-marker investigation[J]. Chinese Science Bulletin, 2013, 58(33):3450-3457.
[17] 张水昌, 朱光有, 何坤.硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J].岩石学报, 2011, 27(3):809-826. ZHANG Shuichang, ZHU Guangyou, HE Kun. The effects of thermochemical sulfate reduction on occurrence oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3):809-826.
[18] 杜春国, 郝芳, 邹华耀, 等.热化学硫酸盐还原作用对碳酸盐岩气藏的化学改造:以川东北地区长兴组-飞仙关组气藏为例[J].地质学报, 2007, 81(1):119-126. DU Chunguo, HAO Fang, ZOU Huayao, et al. Effect of thermochemical sulfate reduction upon carbonate gas reservoir:An example from the northeast Sichuan Basin[J]. Acta Geologica Sinica, 2007, 81(1):119-126.
[19] 孔庆芬, 张文正, 李剑锋, 等.鄂尔多斯盆地奥陶系盐下天然气地球化学特征及成因[J].天然气地球科学, 2019, 30(3):423-432. KONG Qingfen, ZHANG Wenzheng, LI Jianfeng, et al. Geochemical characteristics and genesis of Ordovician natural gas under gypsolyte in Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(3):423-432.
[20] 马安来, 金之钧, 李慧莉, 等.塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J].地球科学, 2020, 45(5):1737-1753. MA Anlai, JIN Zhijun, LI Huili, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5):1737-1753.
[21] 贾连奇, 蔡春芳, 李红霞, 等.塔中地区热化学硫酸盐还原作用对深埋白云岩储层的改造[J].沉积学报, 2016, 34(6):1057-1067. JIA Lianqi, CAI Chunfang, LI Hongxia, et al. Thermochemical sulfate reduction-related mesogenetic dissolution of deeply buried dolostone reservoirs in the Tazhong area[J]. Acta Sedimentologica Sinica, 2016, 34(6):1057-1067.
[22] 王建功, 张道伟, 易定红, 等.柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J].岩性油气藏, 2018, 30(4):1-13. WANG Jiangong, ZHANG Daowei, YI Dinghong, et al. Depositional characteristics and facies model of lacustrine carbonate rocks in the upper member of lower Ganchaigou Formation in western Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(4):1-13.
[23] 易定红, 王建功, 石兰亭, 等.柴达木盆地英西地区E32碳酸盐岩沉积演化特征[J].岩性油气藏, 2019, 31(2):46-55. YI Dinghong, WANG Jiangong, SHI Lanting, et al. Sedimentary evolution characteristics of E32 carbonate rocks in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs, 2019, 31(2):46-55.
[24] 冯进来, 曹剑, 胡凯, 等.柴达木盆地中深层混积岩储层形成机制[J].岩石学报, 2011, 27(8):2461-2472. FENG Jinlai, CAO Jian, HU Kai, et al. Forming mechanism of middle-deep mixed rock reservoir in Qaidam Basin[J]. Acta Petrologica Sinica, 2011, 27(8):2461-2472.
[25] 黄成刚, 常海燕, 崔俊, 等.柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J].石油学报, 2017, 38(11):1230-1243. HUANG Chenggang, CHANG Haiyan, CUI Jun, et al. Oligocene sedimentary characteristics and hydrocarbon accumulation model in the western Qaidam Basin[J]. Acta Petrolei Sinica, 2017, 38 (11):1230-1243.
[26] 吴瑾, 朱军, 王兆兵, 等.柴达木盆地英西地区渐新统湖相碳酸盐岩储层形成与演化[J].大庆石油地质与开发, 2021, 40 (3):13-23. WU Jin, ZHU Jun, WANG Zhaobing, et al. Formation and evolution of Oligocene lacustrine carbonate reservoirs in Yingxi area of Qaidam Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3):13-23.
[27] 陈启林, 张小军, 黄成刚, 等.柴达木盆地英西地区渐新统硫酸盐硫同位素组成及其地质意义[J].地质论评, 2019, 65(3):558-572. CHEN Qilin, ZHANG Xiaojun, HUANG Chenggang, et al. Sulfur isotopic composition of sulphate in Oligocene series in Yingxi area, Qaidam Basin, and its geological significance[J]. Geological Review, 2019, 65(3):558-572.
[28] 田继先, 赵健, 张静, 等.柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J].岩性油气藏, 2020, 32(5):84-92. TIAN Jixian, ZHAO Jian, ZHANG Jing, et al. Formation mechanism and distribution prediction of hydrogen sulfide in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(5):84-92.
[29] 戴俊生, 叶兴树, 汤良杰, 等.柴达木盆地构造分区及其油气远景[J].地质科学, 2003, 38(3):291-296. DAI Junsheng, YE Xingshu, TANG Liangjie, et al. Tectonic units and oil-gas potential of the Qaidam Basin[J]. Chinese Journal of Geology, 2003, 38(3):291-296.
[30] 郭荣涛, 马达德, 张永庶, 等.柴达木盆地英西地区下干柴沟组上段超压孔缝型储层特征及形成机理[J].石油学报, 2019, 40(4):411-422. GUO Rongtao, MA Dade, ZHANG Yongshu, et al. Characteristics and formation mechanism of overpressure pore-fracture reservoirs for upper member of Xiaganchaigou Formation in the west of Yingxiong ridge, Qaidam Basin[J]. Acta Petrolei Sinica, 2019, 40(4):411-422.
[31] 黄成刚, 袁剑英, 田光荣, 等.柴西地区始新统湖相白云岩储层地球化学特征及形成机理[J].地学前缘, 2016, 23(3):230-242. HUANG Chenggang, YUAN Jianying, TIAN Guangrong, et al. Geochemical characteristics and formation mechanism of Eocene lacustrine dolomite reservoir in western Qaidam[J]. Earth Science Frontiers, 2016, 23(3):230-242.
[32] 徐彬, 李建明, 张永庶, 等.T-R旋回层序在陆相盐湖盆地中的应用:以柴西南英西地区下干柴沟组上段为例[J].断块油气田, 2020, 27(4):412-417. XU Bin, LI Jianming, ZHANG Yongshu, et al. Application of TR cycle sequence in continental salt lake basin:A case study of the Upper Member of Lower Ganchaigou Formation in Yingxi area, southwestern Qaidam Basin[J]. Fault-Block Oil & Gas Field, 2020, 27(4):412-417.
[33] 张永庶, 周飞, 王波, 等.柴西地区天然气成因、类型及成藏规律[J].中国石油勘探, 2019, 24(4):498-508. ZHANG Yongshu, ZHOU Fei, WANG Bo, et al. Genesis, types and reservoir formation law of natural gas in western Qaidam Basin[J]. China Petroleum Exploration, 2019, 24(4):498-508.
[1] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[2] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[3] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[4] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[5] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[6] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[7] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[8] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[9] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
[10] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[11] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[12] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[13] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[14] 应凯莹, 蔡长娥, 梁煜琦, 陈鸿, 尚文亮, 苏桂娇. 伊通盆地岔路河断陷古近系断层的垂向封闭性及其控藏作用[J]. 岩性油气藏, 2023, 35(2): 136-143.
[15] 郑彬, 董翱, 张源智, 张毅, 苏珊, 张士超, 樊津津, 骆垠山. 济阳坳陷渤南洼陷古近系沙河街组流体压力建场过程及其石油地质意义[J]. 岩性油气藏, 2023, 35(2): 59-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .