岩性油气藏 ›› 2013, Vol. 25 ›› Issue (4): 123–128.doi: 10.3969/j.issn.1673-8926.2013.04.024

• 油气田开发 • 上一篇    

低渗产水气藏携液模型研究与应用

周瑞立,周 舰,罗 懿,李 璇,刘玉祥   

  1. 中国石化华北分公司工程技术研究院,河南郑州450006
  • 出版日期:2013-10-08 发布日期:2013-10-08
  • 第一作者:周瑞立(1982-),男,硕士,工程师,主要从事采油与采气工艺研究。 地址:(450006)河南省郑州市中原区陇海西路 199 号。 E-mail:zhouruili1982@163.com
  • 基金资助:

    国家重大科技专项“东胜气田钻采工程工艺体系优化研究”(编号:QTKF一2012—15)资助

Research and application of liquid—carrying model for low permeability and water production gas reservoir

ZHOU Ruili,ZHOU Jian,LUO Yi,LI Xuan,LIU Yuxiang   

  1. Research Institute of Engineering Technology,Sinopec North China Company,Zhengzhou 450006,China
  • Online:2013-10-08 Published:2013-10-08

摘要:

准确预测气井临界携液气流量,对优化气井工作制度、排除井筒积液具有重要意义。 现有液滴模型未考虑液滴变形和液滴大小的影响,将临界韦伯数取为定值或认为临界携液气流量与临界韦伯数无关,导致模型的关系式系数为定值,存在一定理论不足。 综合考虑液滴变形和液滴大小特征,由液滴质点力平衡理论和能量守恒原理导出了气井临界携液气流量计算新模型。 新模型的关系式系数随压力增大而变大,为 1.92~5.30,弥补了现有液滴模型的关系式系数为定值的缺陷。 现场应用表明:新模型预测大牛地气田气井积液状态与实际较吻合,可满足生产要求。

关键词: 低渗透油藏, 非达西渗流, 排状交错水平井井网, 见水时间, 面积波及效率

Abstract:

Accurate prediction of the critical liquid-carrying gas flow is very important to optimize work systems and exclude wellbore effusion for gas well. The currently used liquid-carrying models generally fail to comprehensively consider the influence of liquid droplet deformation and size for the critical liquid-carrying gas flow, and critical Weber number is taken as a given value or critical liquid-carrying gas flow has nothing to do with the Weber number, which is certainly lack of theory. Considering the droplet size and droplet deformation characteristics, and combined with the critical Weber number algorithm of Tatterson and Azzopdiar, based on the liquid droplet partial force equilibrium theory and energy conservation principle, we deduced a new model to predict the critical liquid-carrying gas flow. The new model coefficient varies from 1.92 to 5.3, which becomes larger with the pressure gradually, and it is to make up a defect on a given value of the coefficients of the currently used liquid-carrying models. Field application shows that the predicted effusion status of the vertical wells by this new model is agreed with actual effusion status, which can meet the production requirements.

Key words: lowpermeability reservoirs, non-Darcy flow, staggered well pattern of horizontal wells, water breakthrough time, areal sweep efficiency

[1] 白涛.鄂尔多斯盆地大牛地气田储层评价与产能主控因数分析[D].成都:成都理工大学,2008.
[2] 郑军,闫长辉,张文洪,等.大牛地气田气井最小携液产量研究[J].油气地质与采收率,2011,18(1):70-73.
[3] Turner R G,Hubbard M G,Dukler A E. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J]. Journal of Petroleum Technology,1969,21(11):1475-1482.
[4] Coleman S B,Clay H B, McCurdy, et al. A new look at predicting gas-well load-up[R]. SPE 20280,1991:329-333.
[5] Li Min,Sun Lei,Li Shilun. New view on continuous-removal liquids from gas wells[R]. SPE 70016,2001:42-46.
[6] 王毅忠,刘庆文.计算气井最小携液临界流量的新方法[J].大庆石油地质与开发,2007,26(6):82-85.
[7] 魏纳,李颖川,李锐钦,等.气井积液可视化实验[J].钻采工艺,2007,30(3):43-45.
[8] 雷登生,杜志敏,单高军,等.气藏水平井携液临界流量计算[J].石油学报,2010,31(4):637-639.
[9] Tatterson D F,Dallman J C,Hanratty T J. Drop sizes in annular gasliquid flows[J]. AIChE Journal,1977,23(1):68-76.
[10] Azzopardi B J,Pierarcey A,Jepson D M. Drop size measurements for annular two-phase flow in a 20 mm diameter vertical tube [J].Experiments in Fluids,1991,11(2/3):191-197.
[11] Hinze J O. Critical speeds and sizes of liquid globules[J]. Applied Scientific Research,1949,1(1):273-288.
[12] Liu Z,Reitz R D. An analysis of the distortion and breakup mechanisms of high speed liquid drops [J]. International Journal of Multiphase Flow,1997,23(4):631-650.
[13] Helenbrook B T,Edwards C F. Quasi-steady deformation and drag of uncontaminated liquid drops[J]. International Journal of Multiphase Flow,2002,28(10):1631-1657.
[1] 代波, 王磊飞, 庄建, 袁维彬, 王学生. 超低渗透油藏CO2驱最小混相压力实验[J]. 岩性油气藏, 2020, 32(2): 129-133.
[2] 张意超, 陈民锋, 屈丹, 毛梅芬, 杨子由. X油田特低渗透油藏井网加密效果预测方法[J]. 岩性油气藏, 2020, 32(1): 144-151.
[3] 黄全华, 林星宇, 童凯, 陆云, 付云辉. 非达西渗流边水气藏水平井见水时间预测[J]. 岩性油气藏, 2019, 31(1): 147-152.
[4] 殷代印, 项俊辉, 王东琪. 大庆油田长垣外围特低渗透扶杨油层综合分类[J]. 岩性油气藏, 2018, 30(1): 150-154.
[5] 李友全, 韩秀虹, 阎燕, 张德志, 周志为, 孟凡坤. 低渗透油藏CO2吞吐压力响应曲线分析[J]. 岩性油气藏, 2017, 29(6): 119-127.
[6] 陈明强, 王宁, 张阳, 任龙. 渭北油田浅层油藏产能预测方法[J]. 岩性油气藏, 2017, 29(5): 134-139.
[7] 何吉祥, 姜瑞忠, 毛瑜, 袁淋. 致密气藏气水两相压裂水平井产能计算方法[J]. 岩性油气藏, 2017, 29(4): 154-161.
[8] 周游, 李治平, 景成, 谷潇雨, 孙威, 李晓. 基于“岩石物理相-流动单元”测井响应定量评价特低渗透油藏优质储层——以延长油田东部油区长6油层组为例[J]. 岩性油气藏, 2017, 29(1): 116-123.
[9] 黄全华,陆云,陈冲. 带隔板底水气藏见水时间预测方法[J]. 岩性油气藏, 2016, 28(4): 82-87.
[10] 张美玲,祁 蒙,林丽丽 . 大庆外围油田特低渗透油藏水淹层综合评价方法[J]. 岩性油气藏, 2016, 28(2): 93-100.
[11] 马勇新,雷 霄,张乔良,孟令强. 低渗透油藏有效渗透率计算新模型—— — 以珠江口盆地海相低渗透砂岩为例[J]. 岩性油气藏, 2016, 28(1): 117-122.
[12] 熊健,曾山,王绍平. 低渗透油藏变导流垂直裂缝井产能模型[J]. 岩性油气藏, 2013, 25(6): 122-126.
[13] 李传亮,朱苏阳. 再谈启动压力梯度[J]. 岩性油气藏, 2013, 25(4): 1-5.
[14] 朱圣举,张皎生,安小平,韩建润. 低渗透油藏菱形反九点井网产量计算研究[J]. 岩性油气藏, 2012, 24(6): 115-120.
[15] 周瀛,唐海,吕栋梁,赵春明,廖兴武. 排状交错水平井井网面积波及效率研究[J]. 岩性油气藏, 2012, 24(5): 124-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .