岩性油气藏 ›› 2017, Vol. 29 ›› Issue (2): 160–166.doi: 10.3969/j.issn.1673-8926.2017.02.020

• 石油工程 • 上一篇    

清洁压裂液返排液再利用驱油体系研究

周文胜1,2, 王凯1,2, 刘晨1,2, 潘岳1,2, 申健1,2, 刘逸飞3   

  1. 1. 中海油研究总院, 北京 100028;
    2. 海洋石油高效开发国家重点实验室, 北京 100028;
    3. 中国石油大学(华东)石油工程学院, 山东 青岛 257061
  • 收稿日期:2016-07-09 修回日期:2016-09-07 出版日期:2017-03-21 发布日期:2017-03-21
  • 第一作者:周文胜(1972-),男,高级工程师,主要从事海上油气田开发方面的研究工作。地址:(100028)北京市朝阳区太宫南街6号。Email:zhouwsh@cnooc.com.cn。
  • 基金资助:
    “十二五”国家重大科技专项“海上稠油高效开发新技术”(编号:2011ZX05024)资助

Laboratory study on surfactant flooding system based on clean fracturing flowback fluid

ZHOU Wensheng1,2, WANG Kai1,2, LIU Chen1,2, PAN Yue1,2, SHEN Jian1,2, LIU Yifei3   

  1. 1. CNOOC Research Insitute, Beijing 100028, China;
    2. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China;
    3. College of Petroleum Engineering, China University of Petroleum, Qingdao 257061, Shandong, China
  • Received:2016-07-09 Revised:2016-09-07 Online:2017-03-21 Published:2017-03-21

摘要: 压裂液返排液具有液量大、处理难度大、处理费用高及环境污染等问题,为实现清洁压裂液返排液的再利用,通过对压裂液返排液体系中表面活性剂的有效质量分数、吸附性能、降低界面张力性能、改变岩石润湿性性能及提高采收率性能的室内实验评价,构建了基于清洁压裂液返排液的表面活性剂驱油体系。实验结果表明:清洁压裂液返排液体系中表面活性剂的有效质量分数为0.3%,用于目标区块脱水原油时,当其有效质量分数为0.05%~0.30% 时,油水界面张力均可达到10-4~10-3 mN/m 的超低数量级;该体系改变岩石润湿性性能优良,可使油湿石英片表面向弱水湿方向转变;同时,该体系动态饱和吸附量为9.53 mg/g,且水驱后动态滞留量仅相当于动态饱和吸附量的25%~33%。室内岩心模拟驱油实验反映出,在最优注入方案条件下实现采收率增值12.5%,表明该体系能够满足目标区块压裂后进一步提高采收率的要求。

Abstract: Aiming at the large volumes,great treatment difficulties,high treatment cost of fracturing flowback fluid,and its harmfulness for environmental safety,the effective mass fraction,adsorption behavior,interfacial tension behavior,wettability alteration,incremental oil recovery ability and the mechanism of surfactant flooding were studied in laboratory,and a method was established to realize the reutilization of clean fracturing flowback fluid in surfactant flooding. The results show that the effective mass fraction of clean fracturing flowback fluid is 0.3%. The oi/water interfacial tension could be lowered to 10-4 mN/m to 10-3 mN/m with the effective mass fraction ranging from 0.05% to 0.30%. The clean fracturing flowback fluid system has excellent wettability performance and could easily change oil-wet quartz to water-wet. Meanwhile,the dynamic adsorption is about 9.53 mg/g and the dynamic retention amount is about 25%-33% of the dynamic adsorption. The physical model experiments show that the oil recovery value can be enhanced 12.5% under optimal injection project,which confirms its excellent performances on further enhanced oil recovery for the target area after fracturing treatment.

中图分类号: 

  • TE34
[1] 朱维耀,鞠岩,赵明,等. 低渗透裂缝性砂岩油藏多孔介质渗 吸机理研究.石油学报,2002,23(6):56-59 . ZHU W Y,JU Y,ZHAO M,et al. Spontaneous imbibition mechanism of flow through porous media and waterflooding in low-permeability fractured sandstone reservoir. Acta Petrolei Sinica, 2002,23(6):56-59.
[2] 戴彩丽,赵娟,姜汉桥,等. 低渗透砂岩油藏注入阴阳离子聚 合物深部调剖技术研究.石油学报,2010,31(3):440-444 . DAI C L,ZHAO J,JIANG H Q,et al. Alternative injection of anionic and cationic polymers for deep profile control in lowpermeability sandbody reservoir. Acta Petrolei Sinica,2010,31 (3):440-444.
[3] 冯其红,王森,陈存良,等. 低渗透裂缝性油藏调剖选井无因次压力指数决策方法.石油学报,2013,34(5):932-937 . FENG Q H,WANG S,CHEN C L,et al. A new decision method based on dimensionless pressure index for profile control of lowpermeability fractured reservoirs. Acta Petrolei Sinica,2013,34 (5):932-937.
[4] 胥元刚,刘顺. 低渗透油藏油井流入动态研究. 石油学报, 2005,26(4):77-80 . XU Y G,LIU S. Study on inflow performance of oil wells in low-permeability reservoirs. Acta Petrolei Sinica,2005,26(4): 77-80.
[5] DEHGHANPOUR H,ZUBAIR HA,CHHABRAA,et al. Liquid intake of organic shales. Energy & Fuels,2012,26(9):5750-5758.
[6] DANTAS T N C,SANTANNA V C,NETO AA D,et al. Rheological properties of a new surfactant-based fracturing gel. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003,225(1/2/3):129-135.
[7] TAYALA,KELLY R M,KHAN S A. Viscosity reduction of hydraulic fracturing fluids through enzymatic hydrolysis. SPE Journal,1997,2(2):204-212.
[8] LEGEMAHM,GUERINM,SUN H,et al. Novel high-efficiency boron crosslinkers for low-polymer-loading fracturing fluids. SPE Journal,2014,19(4):737-743.
[9] MALHOTRA S,SHARMA M M. A general correlation for proppant settling in VES fluids. SPE 139581:2011.
[10] FONTANA C,MURUAGA E,PEREZ D R,et al. Successful application of a high temperature viscoelastic surfactant(VES) fracturing fluids under extreme conditions in patagonian wells San Jorge Basin. SPE 107277:2007.
[11] SAMUEL M M,CARD R J,NELSON E B,et al. Polymer-free fluid for fracturing applications. SPE Drilling & Completion, 1999,14(4):240-246.
[12] 油气田开发专业标准化委员会. 表面及界面张力测定方法: SY/T 5370 —1999.北京:中国标准出版社,1999:1-10. Professional Standardization Committee of Oil and Gas Field Development. Measurement method for surface tension and interface tension:SY/T 5370 —1999. Beijing:Chinese Standard Press,1999:1-10.
[13] BAI Y R,XIONG C M,SHANG X S,et al. Experimental study on ethanolamine/surfactant flooding for enhanced oil recovery. Energy & Fuels,2014,28(3):1829-1837.
[14] DAI C L,WANG K,LIU Y F,et al. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for enhanced oil recovery(EOR). Plos One,2014,9 (11):113723-113733.
[15] DAI C L,WANG K,LIU Y F,et al. Reutilization of fracturing flowback fluid in surfactant flooding for enhanced oil recovery. Energy & Fuels,2015,29(6):2304-2311.
[16] 裴海华,张贵才,葛际江,等. 稠油碱驱中液滴流提高采收率 机理. 石油学报,2012,33(4):663-669 . PEI H H,ZHANG G C,GE J J,et al. Mechanism of“droplet flow”in alkaline flooding for enhancing heavy-oil recovery. Acta Petrolei Sinica,2012,33(4):663-669.
[17] 车洪昌,任耀宇,刘汉平,等. 龙虎泡油田活性水驱油室内实 验研究. 岩性油气藏,2011,23(2):128-132 . CHE H C,REN Y Y,LIU H P,et al. Laboratory study on oil displacement with active water in Longhupao Oilfield. Lithologic Reservoirs,2011,23(2):128-132.
[18] 李传亮,李冬梅. 渗吸的动力不是毛管压力. 岩性油气藏, 2011,23(2):114-117 . LI C L,LI D M. Imbibition is not caused by capillary pressure. Lithologic Reservoirs,2011,23(2):114-117.
[19] ZHAO Z K,BI C G,LI Z S,et al. Interfacial tension between crude oil and decyl methyl naphthalene sulfonate surfactant alkali-free flooding systems. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,276(1/2/3):186-191.
[20] MELROSE J C. Role of capillary forces in detennining microscopic displacement efficiency for oil recovery by waterflooding. Journal of Canadian Petroleum Technology,1974,13(4): 54-62.
[21] LI N,ZHANG G C,GE J J,et al. Adsorption behavior of betainetype surfactant on quartz sand. Energy & Fuels,2011,25(10): 4430-4437.
[22] PEI H H,ZHANG G C,GE J J,et al. Study on the variation of dynamic interfacial tension in the process of alkaline flooding for heavy oil. Fuel,2013,104(5):372-378.
[23] LASHKARBOLOOKI M,AYATOLLAHI S,RIAZI M. The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection. Journal of Chemical & Engineering Data,2014,59 (11):3624-3634.
[24] DAI C L,ZHAO J H,YAN L P,et al. Adsorption behavior of cocamidopropyl betaine under conditions of high temperature and high salinity. Journal of Applied Polymer Science,2014, 131(12):1-7.
[1] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[2] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[3] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[4] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[5] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 丁超, 王攀, 秦亚东, 梁向进, 郑爱萍, 李宁, 邢向荣. 基于非稳态热传导的SAGD开发指标预测模型[J]. 岩性油气藏, 2023, 35(1): 160-168.
[8] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[9] 孟智强, 葛丽珍, 祝晓林, 王永平, 朱志强. 气顶边水油藏气/水驱产油量贡献评价方法[J]. 岩性油气藏, 2022, 34(5): 162-170.
[10] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[11] 李甜, 代宗仰, 李阳, 黄蕾, 宫振超, 赵晓阳, 周晓龙, 黄澜. 辽河西部凹陷雷家地区古近系沙四段湖相白云岩成因[J]. 岩性油气藏, 2022, 34(2): 75-85.
[12] 李冬梅, 李会会, 朱苏阳, 李涛. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏, 2022, 34(1): 154-162.
[13] 毛志强, 张雯, 吴春洲, 陈立峰, 陈亚东, 李岗, 曾慧勇, 刘靓. 纵向双层缝洞油藏橡胶颗粒调流适应性[J]. 岩性油气藏, 2021, 33(5): 172-180.
[14] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[15] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .