岩性油气藏 ›› 2010, Vol. 22 ›› Issue (3): 110113.doi: 10.3969/j.issn.1673-8926.2010.03.021
王浩1,罗兵2,李霆3
WANG Hao1, LUO Bing2, LI Ting3
摘要:
不同的地震弹性阻抗反演软件计算弹性阻抗的方法不尽相同,地震弹性阻抗反演中尚有一些应用条件在没有详细讨论的情况下被简单地加以应用,这给实际生产带来了困难。有鉴于此,以典型的4 种不同类型含气砂岩模型为基础,分析比较了弹性阻抗、反射阻抗和广义弹性阻抗在不同角度下的计算精度;并且基于Biot-Gassman 理论,对Ostrander 含气砂岩模型进行流体替代,探讨了含水饱和度由小变大时不同的弹性阻抗对流体的敏感性。通过4 种不同类型含气砂岩模型计算可知:在第Ⅰ类和第Ⅳ类含气砂岩中,入射角不超过40° 时,EI,RI 和GEI 均能替代Zoeppritz 方程;在第Ⅱ类含气砂岩中,入射角不超过30° 时,EI,RI,GEI 也能替代Zoeppritz 方程;这3 种弹性阻抗无法应用于第Ⅲ类含气砂岩。将偏导的思想应用到Ostrander 含气砂岩模型,计算结果表明,反射阻抗对流体的敏感性强于弹性阻抗和广义弹性阻抗,
且入射角越大,这种敏感性越强。
[1] Lu Shaoming,McMechan G A.Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas[J]. Geophysics,2004,69(1):164-179. [2] Whitcombe D N,Connolly P A,Reagan R L,et al. Extended elastic impedance for fluid and lithology prediction[J]. Geophysics,2002,67(1):63-67. [3] 刘云武,吴海波,刘金平.大庆长垣南部扶杨油层河道砂体预测方法与应用[J].大庆石油地质与开发,2006,25(5):106-108. [4] 张奎,倪逸.三种弹性波阻抗公式比较[J].石油地球物理勘探,2006,41(增刊):7-11. [5] Connolly P. Elastic impedance[J]. The Leading Edge,1999,18:438-452. [6] Santos L T,Tygel M,Buginga R. Reflection Impedance[C]. SEG 72nd Annual Meeting expanded abstracts,Salt Lake City,Utah,2002. [7] 马劲风.地震勘探中广义弹性阻抗的正反演[J].地球物理学报,2003,46(1):118-124. [8] Rutherford S R,Williams R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics,1989,54(6):680-688. [9] Castagna J P,Swan H W.Principles of AVO crossplotting[J]. The Leading Edge,1997,16(4):337-344. [10] Gomez C T,Tatham R H. Sensitivity analysis of seismic reflectivity to partial gas saturation[J]. Geophysics,2007,72(3):45-57. [11] Ostrander W J. Plane-wave reflection coefficients for gas sands at nonormal angles of incidence[J]. Geophysics,1984,49(10):1 637-1 648. |
[1] | 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146. |
[2] | 江梦雅, 王江涛, 刘龙松, 李卉, 陈海龙, 蒋中发, 王学勇, 刘海磊. 准噶尔盆地盆1井西凹陷石炭系—二叠系天然气特征及成藏主控因素[J]. 岩性油气藏, 2023, 35(3): 138-151. |
[3] | 徐壮, 石万忠, 王任, 骆福嵩, 夏永涛, 覃硕, 张晓. 塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式[J]. 岩性油气藏, 2023, 35(2): 31-46. |
[4] | 李承泽, 陈国俊, 田兵, 袁晓宇, 孙瑞, 苏龙. 珠江口盆地深层高温高压下的水岩作用[J]. 岩性油气藏, 2022, 34(4): 141-149. |
[5] | 汪林波, 韩登林, 王晨晨, 袁瑞, 林伟, 张娟. 库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J]. 岩性油气藏, 2022, 34(3): 49-59. |
[6] | 常少英, 刘玲利, 崔钰瑶, 王锋, 宋明星, 穆晓亮. 浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏, 2022, 34(1): 139-147. |
[7] | 冯雪, 高胜利, 刘永涛, 王秀珍. 鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征[J]. 岩性油气藏, 2021, 33(6): 48-58. |
[8] | 李娟, 郑茜, 孙松领, 张斌, 陈广坡, 何巍巍, 韩乾凤. 应用测井储层因子预测变质碎屑岩裂缝-孔隙型储层——以海拉尔盆地贝尔凹陷基岩为例[J]. 岩性油气藏, 2021, 33(6): 165-176. |
[9] | 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120. |
[10] | 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12. |
[11] | 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92. |
[12] | 罗晓彤, 文华国, 彭才, 李云, 赵研. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3): 68-81. |
[13] | 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66. |
[14] | 赵汉卿, 温慧芸, 穆朋飞, 李超, 吴穹螈. 垦利A油田沙三上段近源辫状河三角洲沉积特征[J]. 岩性油气藏, 2019, 31(3): 37-44. |
[15] | 张少龙, 闫建平, 唐洪明, 孙红, 王敏, 董政. 致密碎屑岩气藏可压裂性测井评价方法及应用——以松辽盆地王府断陷登娄库组为例[J]. 岩性油气藏, 2018, 30(3): 133-142. |
|