岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 166–172.doi: 10.12108/yxyqc.20200316

• 石油工程 • 上一篇    

碳酸盐岩酸蚀裂缝表面形态特征的实验研究

冯炜1,2,3, 杨晨1,3,4, 陶善浔1,3, 王财忠1,3, 陆彦颖5, 张路锋3, 周福建3   

  1. 1. 中国石油大学(北京)石油工程学院, 北京 102249;
    2. 意大利帕多瓦大学 地球科学学院, 帕多瓦 35131;
    3. 油气资源与探测国家重点实验室, 北京 102249;
    4. 华北水利水电大学 水利学院, 郑州 450046;
    5. 中国石油集团川庆钻探工程有限公司 钻采工程技术研究院, 四川 广汉 618300
  • 收稿日期:2019-08-01 修回日期:2019-09-09 出版日期:2020-05-21 发布日期:2020-04-30
  • 作者简介:冯炜(1993-),男,意大利帕多瓦大学在读博士研究生,研究方向为油气井工程和储层改造。地址:(35131) Via G.Gradenigo 6,Padova,Italy。Email:364205440@qq.com。
  • 基金资助:
    国家科技重大专项“超深裂缝性气藏井筒失稳机理及转向工艺优化研究”(编号:2016ZX05051)资助

Experimental study on the surface feature of acid-etched fractures in carbonate rocks

FENG Wei1,2,3, YANG Chen1,3,4, TAO Shanxun1,3, WANG Caizhong1,3, LU Yanying5, ZHANG Lufeng3, ZHOU Fujian3   

  1. 1. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Department of Geosciences, University of Padova, Padova 35131, Italy;
    3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    4. School ofWater Conservancy, North China University ofWater Resources and Electric Power, Zhengzhou 450046, China;
    5. CCDC Drilling and ProductionTechnology Research Institute, Guanghan 618300, Sichuan, China
  • Received:2019-08-01 Revised:2019-09-09 Online:2020-05-21 Published:2020-04-30

摘要: 酸压是碳酸盐岩储层改造的常规手段,酸液对岩石的非均质刻蚀使得裂缝表面呈现独特的形态特征,目前针对酸蚀前后裂缝表面形态特征的研究还不够深入。因此,通过室内实验借助3D扫描技术获得真实酸蚀裂缝表面几何形态数据,引入新的表征参数hnεh,定量描述了裂缝表面的起伏程度,对比了酸蚀前后裂缝表面形态的变化。结果表明:酸蚀反应掉水力裂缝的槽点;沿酸液流动方向形成明显的沟槽,凸起部分变缓,曲折比减小,总体起伏程度增大;垂直酸液流动方向上形成了连续的上下波动,曲折比和起伏程度均增大。

关键词: 酸岩反应, 裂缝表面形态, 表征参数, 起伏程度

Abstract: Acid fracturing is a common method for stimulating carbonate reservoir. The surface characteristics of acid-etched fracture is unique due to the non-uniform acid-etching. At present,the research on geometric feature of fracture surface before and after etching is not enough. In this paper,advanced experimental devices were used to obtain real acid-etched fracture samples,then the geometric characteristics of the fracture surface were analyzed by using 3D scanning data,and the new parameters hn and εh were defined to quantitatively describe the fluctuation degree. Furthermore,the change of fracture surface patterns before and after acid-etching were compared. The results show that gullies and holes were formed on the fracture surface and the fluctuation degree increased,the tortuosity decreased along the flow direction and increased vertically to flow direction after acid-etching.

Key words: acid-rock reaction, surface feature, description parameters, fluctuation degree

中图分类号: 

  • TE34
[1] 李爱山.碳酸盐岩裂缝性油藏复合酸压技术研究.东营:中国石油大学(华东),2007. LI A S. Research and application of combination acid and fracturing technology in carbonate fracture reservoir. Dongying:China University of Petroleum (East China),2007.
[2] 冯炜,杨晨,周福建,等.气井携砂数值分析方法.断块油气田,2018,25(4):502-505. FENG W,YANG C,ZHOU F J,et al. Numerical analysis method of gas well with sand. Fault-Block Oil & Gas Field,2018,25(4):502-505
[3] 刘航宇,田中元,徐振永.基于分形特征的碳酸盐岩储层孔隙结构定量评价.岩性油气藏,2017,29(5):97-105. LIU H Y,TIAN Z Y,XU Z Y. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics. Lithologic Reservoirs,2017,29(5):97-105.
[4] DENG J,HILL A D,ZHU D. A theoretical study of acid-fracture conductivity under closure stress. SPE Production&Operations,2011,26(1):9-17.
[5] 王蓓,刘向君,司马立强,等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用.岩性油气藏,2019,31(2):124-133. WANG B,LIU X J,SIMA L Q,et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application. Lithologic Reservoirs,2019,31(2):124-133.
[6] 侯贵廷.裂缝的分形分析方法.应用基础与工程科学学报, 1994(4):299-305. HOU G T. Fractal analysis of fractures. Journal of Basic Science and Engineering,1994(4):299-305.
[7] 蒋廷学,王海涛,卞晓冰,等.水平井体积压裂技术研究与应用.岩性油气藏,2018,30(3):1-11. JIANG T X,WANG H T,BIAN X B,et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs,2018,30(3):1-11.
[8] BARTON N. Suggested method for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts. 1978,5(6):319-368.
[9] MANDELBROT B. The fractal geometry of nature. New York:Freeman,1977:278-298.
[10] LANARO F. A random field model for surface roughness and aperture of rock fractures. International Journal of Rock Mechanics&Mining Sciences,2000,37(8):1195-1210.
[11] RUFFET C,FERY J JONAISI A. Acid fracturing treatment:a surface topography analysis of acid etched fractures to determine residual conductivity. SPE Journal,1998,3(3):155-162.
[12] 赵仕俊,陈忠革,伊向艺,等.酸蚀岩板三维激光扫描仪.仪表技术与传感器,2010,42(7):22-24. ZHAO S J,CHEN Z G,YI X Y,et al. Acid corrosion rock 3D laser scan instrument. Instrument Technique and Sensor,2010, 42(7):22-24.
[13] 解慧.考虑裂缝形态导流能力的数字化方法及其规律研究.成都:成都理工大学,2012. XIE H. The exploration on the digital methods considering the fracture morphology conductivity and its regularity. Chengdu University of Technology,2012.
[14] NEUMANN L F,OLIVEIRA T J L D,SOUSA J L A O,et al. Building acid fracture conductivity in highly-confined carbonates. SPE 152164,2012.
[15] 曲冠政,曲占庆,HZELETT R D,等.页岩拉张型微裂缝几何特征描述及渗透率计算.石油勘探与开发,2016,43(2):115-120. QU G Z,QU Z Q,HZELETT R D,et al. Geometrical description and permeability calculation about shale tensile micro-fractures. Petroleum Exploration and Development,2016,43(2):115-120.
[16] LU C,BAI X,LUO Y,et al. New study of etching patterns of acid-fracture surfaces and relevant conductivity. Journal of Petroleum Science&Engineering,2017,159:135-147.
[1] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[2] 杨美华, 钟海全, 李颖川. 缝洞型碳酸盐岩油藏新型油藏生产指示曲线[J]. 岩性油气藏, 2021, 33(2): 163-170.
[3] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[4] 张运来, 陈建波, 周海燕, 张吉磊, 章威. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153.
[5] 曹旭升, 韩昀, 张继卓, 罗志伟. 渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例[J]. 岩性油气藏, 2020, 32(4): 155-162.
[6] 崔永正, 姜瑞忠, 郜益华, 乔欣, 王琼. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏, 2020, 32(4): 172-180.
[7] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[8] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[9] 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134.
[10] 宋明明, 韩淑乔, 董云鹏, 陈江, 万涛. 致密砂岩储层微观水驱油效率及其主控因素[J]. 岩性油气藏, 2020, 32(1): 135-143.
[11] 任文博. 流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用[J]. 岩性油气藏, 2019, 31(6): 127-134.
[12] 姜瑞忠, 张春光, 郜益华, 耿艳宏, 余辉, 李昊远. 缝洞型碳酸盐岩油藏水平井分形非线性渗流[J]. 岩性油气藏, 2019, 31(6): 118-126.
[13] 孙亮, 李勇, 杨菁, 李保柱. 薄层底水碳酸盐岩油藏水平井含水上升模式及优化注水技术[J]. 岩性油气藏, 2019, 31(6): 135-144.
[14] 冯强汉, 阳生国, 熊哲, 高航, 张佳超, 杨懿, 杨振. 苏里格气田西部S48区气水分布特征[J]. 岩性油气藏, 2019, 31(5): 61-69.
[15] 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .