岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 166–172.doi: 10.12108/yxyqc.20200316

• 石油工程 • 上一篇    

碳酸盐岩酸蚀裂缝表面形态特征的实验研究

冯炜1,2,3, 杨晨1,3,4, 陶善浔1,3, 王财忠1,3, 陆彦颖5, 张路锋3, 周福建3   

  1. 1. 中国石油大学(北京)石油工程学院, 北京 102249;
    2. 意大利帕多瓦大学 地球科学学院, 帕多瓦 35131;
    3. 油气资源与探测国家重点实验室, 北京 102249;
    4. 华北水利水电大学 水利学院, 郑州 450046;
    5. 中国石油集团川庆钻探工程有限公司 钻采工程技术研究院, 四川 广汉 618300
  • 收稿日期:2019-08-01 修回日期:2019-09-09 出版日期:2020-05-21 发布日期:2020-04-30
  • 第一作者:冯炜(1993-),男,意大利帕多瓦大学在读博士研究生,研究方向为油气井工程和储层改造。地址:(35131) Via G.Gradenigo 6,Padova,Italy。Email:364205440@qq.com。
  • 基金资助:
    国家科技重大专项“超深裂缝性气藏井筒失稳机理及转向工艺优化研究”(编号:2016ZX05051)资助

Experimental study on the surface feature of acid-etched fractures in carbonate rocks

FENG Wei1,2,3, YANG Chen1,3,4, TAO Shanxun1,3, WANG Caizhong1,3, LU Yanying5, ZHANG Lufeng3, ZHOU Fujian3   

  1. 1. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Department of Geosciences, University of Padova, Padova 35131, Italy;
    3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    4. School ofWater Conservancy, North China University ofWater Resources and Electric Power, Zhengzhou 450046, China;
    5. CCDC Drilling and ProductionTechnology Research Institute, Guanghan 618300, Sichuan, China
  • Received:2019-08-01 Revised:2019-09-09 Online:2020-05-21 Published:2020-04-30

摘要: 酸压是碳酸盐岩储层改造的常规手段,酸液对岩石的非均质刻蚀使得裂缝表面呈现独特的形态特征,目前针对酸蚀前后裂缝表面形态特征的研究还不够深入。因此,通过室内实验借助3D扫描技术获得真实酸蚀裂缝表面几何形态数据,引入新的表征参数hnεh,定量描述了裂缝表面的起伏程度,对比了酸蚀前后裂缝表面形态的变化。结果表明:酸蚀反应掉水力裂缝的槽点;沿酸液流动方向形成明显的沟槽,凸起部分变缓,曲折比减小,总体起伏程度增大;垂直酸液流动方向上形成了连续的上下波动,曲折比和起伏程度均增大。

关键词: 酸岩反应, 裂缝表面形态, 表征参数, 起伏程度

Abstract: Acid fracturing is a common method for stimulating carbonate reservoir. The surface characteristics of acid-etched fracture is unique due to the non-uniform acid-etching. At present,the research on geometric feature of fracture surface before and after etching is not enough. In this paper,advanced experimental devices were used to obtain real acid-etched fracture samples,then the geometric characteristics of the fracture surface were analyzed by using 3D scanning data,and the new parameters hn and εh were defined to quantitatively describe the fluctuation degree. Furthermore,the change of fracture surface patterns before and after acid-etching were compared. The results show that gullies and holes were formed on the fracture surface and the fluctuation degree increased,the tortuosity decreased along the flow direction and increased vertically to flow direction after acid-etching.

Key words: acid-rock reaction, surface feature, description parameters, fluctuation degree

中图分类号: 

  • TE34
[1] 李爱山.碳酸盐岩裂缝性油藏复合酸压技术研究.东营:中国石油大学(华东),2007. LI A S. Research and application of combination acid and fracturing technology in carbonate fracture reservoir. Dongying:China University of Petroleum (East China),2007.
[2] 冯炜,杨晨,周福建,等.气井携砂数值分析方法.断块油气田,2018,25(4):502-505. FENG W,YANG C,ZHOU F J,et al. Numerical analysis method of gas well with sand. Fault-Block Oil & Gas Field,2018,25(4):502-505
[3] 刘航宇,田中元,徐振永.基于分形特征的碳酸盐岩储层孔隙结构定量评价.岩性油气藏,2017,29(5):97-105. LIU H Y,TIAN Z Y,XU Z Y. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics. Lithologic Reservoirs,2017,29(5):97-105.
[4] DENG J,HILL A D,ZHU D. A theoretical study of acid-fracture conductivity under closure stress. SPE Production&Operations,2011,26(1):9-17.
[5] 王蓓,刘向君,司马立强,等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用.岩性油气藏,2019,31(2):124-133. WANG B,LIU X J,SIMA L Q,et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application. Lithologic Reservoirs,2019,31(2):124-133.
[6] 侯贵廷.裂缝的分形分析方法.应用基础与工程科学学报, 1994(4):299-305. HOU G T. Fractal analysis of fractures. Journal of Basic Science and Engineering,1994(4):299-305.
[7] 蒋廷学,王海涛,卞晓冰,等.水平井体积压裂技术研究与应用.岩性油气藏,2018,30(3):1-11. JIANG T X,WANG H T,BIAN X B,et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs,2018,30(3):1-11.
[8] BARTON N. Suggested method for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts. 1978,5(6):319-368.
[9] MANDELBROT B. The fractal geometry of nature. New York:Freeman,1977:278-298.
[10] LANARO F. A random field model for surface roughness and aperture of rock fractures. International Journal of Rock Mechanics&Mining Sciences,2000,37(8):1195-1210.
[11] RUFFET C,FERY J JONAISI A. Acid fracturing treatment:a surface topography analysis of acid etched fractures to determine residual conductivity. SPE Journal,1998,3(3):155-162.
[12] 赵仕俊,陈忠革,伊向艺,等.酸蚀岩板三维激光扫描仪.仪表技术与传感器,2010,42(7):22-24. ZHAO S J,CHEN Z G,YI X Y,et al. Acid corrosion rock 3D laser scan instrument. Instrument Technique and Sensor,2010, 42(7):22-24.
[13] 解慧.考虑裂缝形态导流能力的数字化方法及其规律研究.成都:成都理工大学,2012. XIE H. The exploration on the digital methods considering the fracture morphology conductivity and its regularity. Chengdu University of Technology,2012.
[14] NEUMANN L F,OLIVEIRA T J L D,SOUSA J L A O,et al. Building acid fracture conductivity in highly-confined carbonates. SPE 152164,2012.
[15] 曲冠政,曲占庆,HZELETT R D,等.页岩拉张型微裂缝几何特征描述及渗透率计算.石油勘探与开发,2016,43(2):115-120. QU G Z,QU Z Q,HZELETT R D,et al. Geometrical description and permeability calculation about shale tensile micro-fractures. Petroleum Exploration and Development,2016,43(2):115-120.
[16] LU C,BAI X,LUO Y,et al. New study of etching patterns of acid-fracture surfaces and relevant conductivity. Journal of Petroleum Science&Engineering,2017,159:135-147.
[1] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[2] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[3] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[4] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[5] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 丁超, 王攀, 秦亚东, 梁向进, 郑爱萍, 李宁, 邢向荣. 基于非稳态热传导的SAGD开发指标预测模型[J]. 岩性油气藏, 2023, 35(1): 160-168.
[8] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[9] 孟智强, 葛丽珍, 祝晓林, 王永平, 朱志强. 气顶边水油藏气/水驱产油量贡献评价方法[J]. 岩性油气藏, 2022, 34(5): 162-170.
[10] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[11] 李甜, 代宗仰, 李阳, 黄蕾, 宫振超, 赵晓阳, 周晓龙, 黄澜. 辽河西部凹陷雷家地区古近系沙四段湖相白云岩成因[J]. 岩性油气藏, 2022, 34(2): 75-85.
[12] 李冬梅, 李会会, 朱苏阳, 李涛. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏, 2022, 34(1): 154-162.
[13] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[14] 毛志强, 张雯, 吴春洲, 陈立峰, 陈亚东, 李岗, 曾慧勇, 刘靓. 纵向双层缝洞油藏橡胶颗粒调流适应性[J]. 岩性油气藏, 2021, 33(5): 172-180.
[15] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .