岩性油气藏 ›› 2013, Vol. 25 ›› Issue (6): 35–39.doi: 10.3969/j.issn.1673-8926.2013.06.007

• 油气地质 • 上一篇    下一篇

非常规油气勘探、评价和开发新方法

王拓1,朱如凯1,2,白斌1,2,吴松涛1,2   

  1. 1.中国石油勘探开发研究院,北京100083; 2.提高石油采收率国家重点实验室,北京100083
  • 出版日期:2013-11-26 发布日期:2013-11-26
  • 第一作者:王拓(1988-),男,中国石油勘探开发研究院在读硕士研究生,研究方向为非常规油气储层。 地址:(100083)北京市海淀区学院路 20 号中国石油勘探开发研究院。 电话:(010)83595345。 E-mail:outgnaw@163.com
  • 基金资助:
    国家油气重大专项“岩性地层油气藏成藏规律、关键技术及目标评价”(编号:2011ZX05001)资助。

New methods for the exploration, evaluation and development of unconventional reservoirs

WANG Tuo1, ZHU Rukai 1,2, BAI Bin 1,2, WU Songtao 1,2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;2. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China
  • Online:2013-11-26 Published:2013-11-26

摘要:

非常规油气资源丰富,商业开采潜力大,北美页岩油气已经实现工业化和商业化成功开采。 因不同 于常规储层的低孔、低渗等特征,非常规储层的勘探、评价和开发需要一套新的技术和方法。 在对北美已 经商业化生产的 Eagle Ford,Marcellus 和 Hawkville 等区块的页岩勘探、评价和开发技术调研的基础上, 总结出一套针对非常规油气勘探、评价及开发的方法。 首先通过二维和三维地震技术以及试验井勘探,识 别盆地形态和边界、储层厚度和面积;其次通过岩心数据对测井曲线进行校正,获取包含测井资料、岩石 物理分析成果和“七性关系”处理的测井解释综合成果图,并结合地震识别技术,对有利储层及“甜点”区 分布进行预测;最后,应用地质导向技术,引导水平井钻井在相对高品质储层中持续安全稳定的进行,并 结合三维地震技术,针对不同地质储层情况设计不同的压裂增产方案,达到有效增产效果。 这些新方法的 成功探索,能为中国致密油气、页岩油气及煤层气的勘探、评价和开发提供参考。

关键词: 地震属性, 相关分析, 灰色关联度, 神经网络, 碳酸盐岩储层, 地震沉积学

Abstract:

 Unconventional petroleum especially shale oil and gas have great geological reserves and large exploitation potentiality, and petroleum in shale reservoir has achieved industrialized production in North America. Because of the properties of low permeability and low porosity compared with conventional reservoir, new geological methods and advanced technologies should be employed for unconventional reservoir research. Based on the studyofshale reservoir in Eagle Ford, Marcellus and Hawkville, this paper proposed a series ofnewapproaches for exploration, evaluation and development ofunconventional reservoir. Firstly, 2Dand 3Dseismic alongwith pilot well used toidentifyconfiguration and the boundary of the target basin, as well as the thickness and area of reservoirs. And then, core data were used to carryout logcalibration soas toacquire comprehensive loggingcurve interpretation includingloggingdata, petrophysical analysis data and seven properties of shale reservoirs. Combined with seismic identification technology, “sweet spot” and favorable reservoirs distribution were effectivelypredicted. Finally, geosteeringwas applied toallowthe well tostay within the target windowin reservoir, and combined with 3Dseismic technology, designed scheme ofhydraulic fracture stimulation for different geologic reservoirs. The successfullyexploration ofthese newmethods can provide reference for the exploration, evaluation and development oftight oil/gas, shale oil/gas and coalbed methane in China.

 

Key words: seismic attributes, correlation analysis, grey correlation degree, neural network, carbonate reservoir, seismic sedimentology

[1] 邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特 征[J].石油学报,2009,30(3):324-331. 
[2] 赵政璋,杜金虎.致密油气[M].北京:石油工业出版社,2012:105-128. 
[3] Zeng H,Henry S C,Riola J P. Stratal slicing,part Ⅱ :Real 3-D seismic data[J]. Geophysics,1998,63(2):514-522. 
[4] 卫平生,潘建国,张虎权,等.地震储层学的概念,研究方法和关 键技术[J].岩性油气藏,2010,22:1-6.
[5] Stoneburner R K. The exploration,appraisal and development of unconventional reservoirs:A new approach to petroleum geology [C]. AAPG Distinguished Lecture,Denver,2013.
[6] Bowker K A. Barnett Shale gas production,Fort Worth Basin:Issues and discussion[J]. AAPG Bulletin,2007,91(4):523-533.
[7] Kundert D,Mullen M. Proper evaluation of shale gas reservoirs leads to a more effective hydraulic-fracture stimulation[R]. SPE 123586,2009.
[8] Coates G R,Peveraro R C A,Hardwick A,et al. The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data[R]. SPE 22723,1991.
[9] Walls J D,Diaz E,Derzhi N,et al. Eagle ford shale reservoir properties from digital rock physics [J]. First Break,2011,29 (6):97-101.
[10] Quirein J,Witkowsky J,Truax J,et al. Integrating core data and wireline geochemical data for formation evaluation and characterization of shale-gas reservoirs[R]. SPE 134559,2010.
[11] Pollastro R M,Jarvie D M,Hill R J,et al. Geologic framework of the Mississippian Barnett Shale,Barnett-Paleozoic total petroleum system,Bend archFort Worth Basin,Texas[J]. AAPG Bulletin,2007,91(4):405-436.
[12] Buller D,Hughes S,Market J,et al. Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells[R].SPE 132990,2010.
[13] Hart B S. Seismic expression of fracture-swarm sweet spots,Upper Cretaceous tight-gas reservoirs,San Juan Basin[J]. AAPG Bulletin,2006,90(10):1519-1534.
[14] Carter K M,Harper J A,Schmid K W,et al. Unconventional natural gas resources in Pennsylvania:The backstory of the modern Marcellus Shale play[J]. Environmental Geosciences,2011,18(4):217257.
[15] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin,2002,86(11):1921-1938.
[16] Martineau D F. History of the Newark East field and the Barnett Shale as a gas reservoir[J]. AAPG Bulletin,2007,91(4):399-403.
[17] Pitcher J,Jackson T. Geosteering in unconventional shales:Current practice and developing methodologies[C]. SPE/EAGE European Unconventional Resources Conference and Exhibition,Vienna,2012.
[18] Baihly J,Malpani R,Edwards C,et al. Unlocking the shale mystery:how lateral measurements and well placement impact completions and resultant Production[R]. SPE 138427,2010.
[19] Market J,Quirein J,Pitcher J,et al. Logging-While-Drilling in Unconventional Shales[R]. SPE 133685,2010.
[20] Cartwright J. The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins[J].Journal of the Geological Society,2007,164(5):881-893.

[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[3] 熊波, 朱冬雪, 方朝合, 王社教, 杜广林, 薛亚斐, 莫邵元, 辛福东. 基于BP算法的中深层同轴套管换热量预测[J]. 岩性油气藏, 2024, 36(2): 15-22.
[4] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[5] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[6] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[7] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[8] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[9] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[10] 常少英, 刘玲利, 崔钰瑶, 王锋, 宋明星, 穆晓亮. 浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏, 2022, 34(1): 139-147.
[11] 冯雪, 高胜利, 刘永涛, 王秀珍. 鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征[J]. 岩性油气藏, 2021, 33(6): 48-58.
[12] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
[13] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[14] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[15] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .