岩性油气藏 ›› 2013, Vol. 25 ›› Issue (6): 35–39.doi: 10.3969/j.issn.1673-8926.2013.06.007

• 油气地质 • 上一篇    下一篇

非常规油气勘探、评价和开发新方法

王拓1,朱如凯1,2,白斌1,2,吴松涛1,2   

  1. 1.中国石油勘探开发研究院,北京100083; 2.提高石油采收率国家重点实验室,北京100083
  • 出版日期:2013-11-26 发布日期:2013-11-26
  • 作者简介:王拓(1988-),男,中国石油勘探开发研究院在读硕士研究生,研究方向为非常规油气储层。 地址:(100083)北京市海淀区学院路 20 号中国石油勘探开发研究院。 电话:(010)83595345。 E-mail:outgnaw@163.com
  • 基金资助:
    国家油气重大专项“岩性地层油气藏成藏规律、关键技术及目标评价”(编号:2011ZX05001)资助。

New methods for the exploration, evaluation and development of unconventional reservoirs

WANG Tuo1, ZHU Rukai 1,2, BAI Bin 1,2, WU Songtao 1,2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;2. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China
  • Online:2013-11-26 Published:2013-11-26

摘要:

非常规油气资源丰富,商业开采潜力大,北美页岩油气已经实现工业化和商业化成功开采。 因不同 于常规储层的低孔、低渗等特征,非常规储层的勘探、评价和开发需要一套新的技术和方法。 在对北美已 经商业化生产的 Eagle Ford,Marcellus 和 Hawkville 等区块的页岩勘探、评价和开发技术调研的基础上, 总结出一套针对非常规油气勘探、评价及开发的方法。 首先通过二维和三维地震技术以及试验井勘探,识 别盆地形态和边界、储层厚度和面积;其次通过岩心数据对测井曲线进行校正,获取包含测井资料、岩石 物理分析成果和“七性关系”处理的测井解释综合成果图,并结合地震识别技术,对有利储层及“甜点”区 分布进行预测;最后,应用地质导向技术,引导水平井钻井在相对高品质储层中持续安全稳定的进行,并 结合三维地震技术,针对不同地质储层情况设计不同的压裂增产方案,达到有效增产效果。 这些新方法的 成功探索,能为中国致密油气、页岩油气及煤层气的勘探、评价和开发提供参考。

关键词: 地震属性, 相关分析, 灰色关联度, 神经网络, 碳酸盐岩储层, 地震沉积学

Abstract:

 Unconventional petroleum especially shale oil and gas have great geological reserves and large exploitation potentiality, and petroleum in shale reservoir has achieved industrialized production in North America. Because of the properties of low permeability and low porosity compared with conventional reservoir, new geological methods and advanced technologies should be employed for unconventional reservoir research. Based on the studyofshale reservoir in Eagle Ford, Marcellus and Hawkville, this paper proposed a series ofnewapproaches for exploration, evaluation and development ofunconventional reservoir. Firstly, 2Dand 3Dseismic alongwith pilot well used toidentifyconfiguration and the boundary of the target basin, as well as the thickness and area of reservoirs. And then, core data were used to carryout logcalibration soas toacquire comprehensive loggingcurve interpretation includingloggingdata, petrophysical analysis data and seven properties of shale reservoirs. Combined with seismic identification technology, “sweet spot” and favorable reservoirs distribution were effectivelypredicted. Finally, geosteeringwas applied toallowthe well tostay within the target windowin reservoir, and combined with 3Dseismic technology, designed scheme ofhydraulic fracture stimulation for different geologic reservoirs. The successfullyexploration ofthese newmethods can provide reference for the exploration, evaluation and development oftight oil/gas, shale oil/gas and coalbed methane in China.

 

Key words: seismic attributes, correlation analysis, grey correlation degree, neural network, carbonate reservoir, seismic sedimentology

[1] 邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特 征[J].石油学报,2009,30(3):324-331. 
[2] 赵政璋,杜金虎.致密油气[M].北京:石油工业出版社,2012:105-128. 
[3] Zeng H,Henry S C,Riola J P. Stratal slicing,part Ⅱ :Real 3-D seismic data[J]. Geophysics,1998,63(2):514-522. 
[4] 卫平生,潘建国,张虎权,等.地震储层学的概念,研究方法和关 键技术[J].岩性油气藏,2010,22:1-6.
[5] Stoneburner R K. The exploration,appraisal and development of unconventional reservoirs:A new approach to petroleum geology [C]. AAPG Distinguished Lecture,Denver,2013.
[6] Bowker K A. Barnett Shale gas production,Fort Worth Basin:Issues and discussion[J]. AAPG Bulletin,2007,91(4):523-533.
[7] Kundert D,Mullen M. Proper evaluation of shale gas reservoirs leads to a more effective hydraulic-fracture stimulation[R]. SPE 123586,2009.
[8] Coates G R,Peveraro R C A,Hardwick A,et al. The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data[R]. SPE 22723,1991.
[9] Walls J D,Diaz E,Derzhi N,et al. Eagle ford shale reservoir properties from digital rock physics [J]. First Break,2011,29 (6):97-101.
[10] Quirein J,Witkowsky J,Truax J,et al. Integrating core data and wireline geochemical data for formation evaluation and characterization of shale-gas reservoirs[R]. SPE 134559,2010.
[11] Pollastro R M,Jarvie D M,Hill R J,et al. Geologic framework of the Mississippian Barnett Shale,Barnett-Paleozoic total petroleum system,Bend archFort Worth Basin,Texas[J]. AAPG Bulletin,2007,91(4):405-436.
[12] Buller D,Hughes S,Market J,et al. Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells[R].SPE 132990,2010.
[13] Hart B S. Seismic expression of fracture-swarm sweet spots,Upper Cretaceous tight-gas reservoirs,San Juan Basin[J]. AAPG Bulletin,2006,90(10):1519-1534.
[14] Carter K M,Harper J A,Schmid K W,et al. Unconventional natural gas resources in Pennsylvania:The backstory of the modern Marcellus Shale play[J]. Environmental Geosciences,2011,18(4):217257.
[15] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin,2002,86(11):1921-1938.
[16] Martineau D F. History of the Newark East field and the Barnett Shale as a gas reservoir[J]. AAPG Bulletin,2007,91(4):399-403.
[17] Pitcher J,Jackson T. Geosteering in unconventional shales:Current practice and developing methodologies[C]. SPE/EAGE European Unconventional Resources Conference and Exhibition,Vienna,2012.
[18] Baihly J,Malpani R,Edwards C,et al. Unlocking the shale mystery:how lateral measurements and well placement impact completions and resultant Production[R]. SPE 138427,2010.
[19] Market J,Quirein J,Pitcher J,et al. Logging-While-Drilling in Unconventional Shales[R]. SPE 133685,2010.
[20] Cartwright J. The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins[J].Journal of the Geological Society,2007,164(5):881-893.

[1] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
[2] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[3] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[4] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[5] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[6] 蒋德鑫, 姜正龙, 张贺, 杨舒越. 烃源岩总有机碳含量测井预测模型探讨——以陆丰凹陷文昌组为例[J]. 岩性油气藏, 2019, 31(6): 109-117.
[7] 仲鸿儒, 成育红, 林孟雄, 高世臣, 仲婷婷. 基于SOM和模糊识别的复杂碳酸盐岩岩性识别[J]. 岩性油气藏, 2019, 31(5): 84-91.
[8] 刘跃杰, 刘书强, 马强, 姚宗森, 佘家朝. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用[J]. 岩性油气藏, 2019, 31(4): 101-111.
[9] 孙文举, 王应斌, 徐文军. 鄂尔多斯盆地东缘雷家碛地区盒8段致密储层“甜点”预测[J]. 岩性油气藏, 2019, 31(1): 69-77.
[10] 刘化清, 苏明军, 倪长宽, 洪忠, 崔向丽, 胡凯峰, 李政阳, 毛俊丽. 薄砂体预测的地震沉积学研究方法[J]. 岩性油气藏, 2018, 30(2): 1-11.
[11] 张闻亭,潘树新,刘震华,张丽萍,李伟,王巍. 地震沉积学在坳陷湖盆滩坝砂体预测中的应用———以酒西盆地Y区块间泉子段为例[J]. 岩性油气藏, 2016, 28(6): 109-116.
[12] 常少英,张先龙,刘永福,刘炜博,余异志,史红岭 . 薄层砂体识别的地震沉积学研究——以 TZ12 井区为例[J]. 岩性油气藏, 2015, 27(6): 72-77.
[13] 熊 冉,杨 存,罗宪婴,乔占峰,曹 鹏. 地震沉积学在白云岩油藏隔夹层预测中的应用----以塔里木盆地英买 32 区块蓬莱坝组为例[J]. 岩性油气藏, 2015, 27(5): 116-121.
[14] 张水山, 刘勇江, 刘贤红. 建南地区须六段致密砂岩优质储层预测技术[J]. 岩性油气藏, 2015, 27(3): 98-102.
[15] 司马立强,李 清,杨 毅,陈 强 . 用 J 函数法求取碳酸盐岩储层饱和度方法探讨[J]. 岩性油气藏, 2014, 26(6): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .